CALDERON-HARDY SPACES WITH VARIABLE EXPONENTS AND THE SOLUTION OF THE EQUATION ΔmF = f FOR f ∈Hp(•)(Rn)

被引:3
作者
Rocha, Pablo [1 ]
机构
[1] Univ Nacl Sur, INMABB, CONICET, RA-8000 Bahia Blanca, Buenos Aires, Argentina
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 03期
关键词
Variable Calderon-Hardy spaces; variable Hardy spaces; atomic decomposition; FRACTIONAL INTEGRALS; OPERATORS;
D O I
10.7153/mia-19-75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we define the Calderon-Hardy spaces with variable exponents on R-n, H-q,gamma(p(center dot)) (R-n), and we show that for m is an element of N the operator Delta(m) is a bijective mapping from H-q,2m(p(center dot)) (R-n) onto H-p(center dot)(R-n).
引用
收藏
页码:1013 / 1030
页数:18
相关论文
共 14 条
[1]   ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN TERMS OF MAXIMAL FUNCTIONS [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1972, 44 (06) :563-582
[2]  
Capone C, 2007, REV MAT IBEROAM, V23, P743
[3]  
Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
[4]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[5]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[6]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[7]  
GATTO A. B., 1983, WADSWORTH INT MATH S, VII
[8]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[9]   Hardy spaces with variable exponents and generalized Campanato spaces [J].
Nakai, Eiichi ;
Sawano, Yoshihiro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :3665-3748
[10]  
Ombrosi S., 2001, REV MAT ARGENT, V42, P81