Facial Expression Classification Using Deep Convolutional Neural Network

被引:6
|
作者
Choi, In-kyu [1 ]
Ahn, Ha-eun [1 ]
Yoo, Jisang [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
关键词
Convolutional neural network; Facial expression; Data augmentation; Database; STIMULUS SET; VALIDATION; FACES; DATABASE;
D O I
10.5370/JEET.2018.13.1.485
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 50 条
  • [21] Deep learning classification of biomedical text using convolutional neural network
    Dollah R.
    Sheng C.Y.
    Zakaria N.
    Othman M.S.
    Rasib A.W.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 512 - 517
  • [22] Automatic classification of pavement crack using deep convolutional neural network
    Li, Baoxian
    Wang, Kelvin C. P.
    Zhang, Allen
    Yang, Enhui
    Wang, Guolong
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (04) : 457 - 463
  • [23] Deep Learning Classification of Biomedical Text using Convolutional Neural Network
    Dollah, Rozilawati
    Sheng, Chew Yi
    Zakaria, Norhawaniah
    Othman, Mohd Shahizan
    Rasib, Abd Wahid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 512 - 517
  • [24] Unsafe Construction Behavior Classification Using Deep Convolutional Neural Network
    P. D. Hung
    N. T. Su
    Pattern Recognition and Image Analysis, 2021, 31 : 271 - 284
  • [25] Multi-Label Classification using Deep Convolutional Neural Network
    Lydia, A. Agnes
    Francis, E. Sagayaraj
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [26] Emerged human-like facial expression representation in a deep convolutional neural network
    Zhou, Liqin
    Yang, Anmin
    Meng, Ming
    Zhou, Ke
    SCIENCE ADVANCES, 2022, 8 (12)
  • [27] Surface Classification of Damaged Concrete Using Deep Convolutional Neural Network
    Hung, P. D.
    Su, N. T.
    Diep, V. T.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2019, 29 (04) : 676 - 687
  • [28] Facial Expression Recognition Based on Convolutional Neural Network
    Zhou Yue
    Feng Yanyan
    Zeng Shangyou
    Pan Bing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 410 - 413
  • [29] Unsafe Construction Behavior Classification Using Deep Convolutional Neural Network
    Hung, P. D.
    Su, N. T.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (02) : 271 - 284
  • [30] Automatic Facial Expression Recognition Based on a Deep Convolutional-Neural-Network Structure
    Shan, Ke
    Guo, Junqi
    You, Wenwan
    Lu, Di
    Bie, Rongfang
    2017 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2017, : 123 - 128