Averaged run-and-tumble walks

被引:30
作者
Angelani, L. [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, UOS Roma, CNR IPCF, I-00185 Rome, Italy
关键词
ANOMALOUS DIFFUSION; TRANSPORT; DYNAMICS;
D O I
10.1209/0295-5075/102/20004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A random walk consisting of a run phase at constant speed interrupted by tumble events is analyzed and analytically solved for arbitrary time distributions. A general expression is given for the Laplace-Fourier transform of the probability density function and for the mean square displacement averaging over initial conditions. Run-and-tumble bacteria and Levy walks are considered as particular cases. The effects of an underlying Brownian noise are also discussed. Derived expressions can be used for a direct comparison with experimentally measured quantities. Copyright (C) EPLA, 2013
引用
收藏
页数:5
相关论文
共 20 条
  • [1] A Levy flight for light
    Barthelemy, Pierre
    Bertolotti, Jacopo
    Wiersma, Diederik S.
    [J]. NATURE, 2008, 453 (7194) : 495 - 498
  • [2] BERG HC, 1972, NATURE, V239, P500, DOI 10.1038/239500a0
  • [3] Berg HC., 2004, E COLI MOTION
  • [4] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [5] Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics?
    Cates, M. E.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (04)
  • [6] Klafter J., 2011, 1 STEPS RANDOM WALKS
  • [7] Lorentz Hendrik, 1905, Arch. Neerl., V10, P336
  • [8] Nonergodicity mimics inhomogeneity in single particle tracking
    Lubelski, Ariel
    Sokolov, Igor M.
    Klafter, Joseph
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (25)
  • [9] Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model
    Martens, K.
    Angelani, L.
    Di Leonardo, R.
    Bocquet, L.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (09)
  • [10] The random walk's guide to anomalous diffusion: a fractional dynamics approach
    Metzler, R
    Klafter, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01): : 1 - 77