Krein parameters and antipodal tight graphs with diameter 3 and 4

被引:30
作者
Jurisic, A
Koolen, J
机构
[1] IMFM, Nova Gorica, Slovenia
[2] Nova Gorica Polytech, Nova Gorica, Slovenia
[3] Univ Bielefeld, FSP, D-33501 Bielefeld, Germany
关键词
Krein parameters; distance-regular graphs; tight graphs; 1-homogeneous graphs; antipodal graphs; locally strongly-regular; Taylor graphs;
D O I
10.1016/S0012-365X(01)00082-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine which Krein parameters of nonbipartite antipodal distance-regular graphs of diameter 3 and 4 can vanish, and give combinatorial interpretations of their vanishing. We also study tight distance-regular graphs of diameter 3 and 4. In the case of diameter 3, tight graphs are precisely the Taylor graphs. In the case of antipodal distance-regular graphs of diameter 4, tight graphs are precisely the graphs for which the Krein parameter q(11)(4) vanishes. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 202
页数:22
相关论文
共 32 条
[1]   Distance-regular graphs with b(2)=1 and antipodal covers [J].
Araya, M ;
Hiraki, A ;
Jurisic, A .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (03) :243-248
[2]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[3]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[4]  
BROUWER AE, UNPUB SOICHER GRAPH
[5]   STRONGLY REGULAR GRAPHS HAVING STRONGLY REGULAR SUB-CONSTITUENTS [J].
CAMERON, PJ ;
GOETHALS, JM ;
SEIDEL, JJ .
JOURNAL OF ALGEBRA, 1978, 55 (02) :257-280
[6]   Dual bipartite Q-polynomial distance-regular graphs [J].
Dickie, GA ;
Terwilliger, PM .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (07) :613-623
[7]  
Gardiner A., 1974, Journal of Combinatorial Theory, Series B, V16, P255, DOI 10.1016/0095-8956(74)90072-0
[8]  
Godsil C. D., 1992, AUSTRALAS J CONBIN, V6, P245
[9]  
Godsil C.D., 1993, Chapman and Hall Mathematics Series
[10]   Nonexistence of some antipodal distance-regular graphs of diameter four [J].
Jurisic, A ;
Koolen, J .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (08) :1039-1046