Existence of isoperimetric regions in contact sub-Riemannian manifolds

被引:25
|
作者
Galli, Matteo [1 ]
Ritore, Manuel [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Sub-Riemannian geometry; Contact geometry; Isoperimetric regions; Isoperimetric profile; Carnot-Caratheodory distance; FINITE PERIMETER; FINE PROPERTIES; VECTOR-FIELDS; INEQUALITIES; CURVATURE; THEOREMS; SETS;
D O I
10.1016/j.jmaa.2012.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of regions minimizing perimeter under a volume constraint in contact sub-Riemannian manifolds whose quotient by the group of contact transformations preserving the sub-Riemannian metric is compact. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:697 / 714
页数:18
相关论文
共 50 条
  • [31] ON THE INDUCED GEOMETRY ON SURFACES IN 3D CONTACT SUB-RIEMANNIAN MANIFOLDS
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [32] Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    Habermann, Karen
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1388 - 1410
  • [33] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [34] Intrinsic complements of equiregular sub-Riemannian manifolds
    Hladky, Robert K.
    GEOMETRIAE DEDICATA, 2014, 173 (01) : 89 - 103
  • [35] Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
    Enrico Le Donne
    Danka Lučić
    Enrico Pasqualetto
    Potential Analysis, 2023, 59 : 349 - 374
  • [36] ON CONTACT SUB-RIEMANNIAN SYMMETRICAL SPACES
    FALBEL, E
    GORODSKI, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1995, 28 (05): : 571 - 589
  • [37] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [38] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Arguillere, Sylvain
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2897 - 2938
  • [39] A CONVERGENCE TO BROWNIAN MOTION ON SUB-RIEMANNIAN MANIFOLDS
    Gordina, Maria
    Laetsch, Thomas
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6263 - 6278
  • [40] Sub-Riemannian metrics for quantum Heisenberg manifolds
    Weaver, N
    JOURNAL OF OPERATOR THEORY, 2000, 43 (02) : 223 - 242