Li-Yorke chaos of backward shift operators on Kothe sequence spaces

被引:13
|
作者
Wu, Xinxing [1 ,2 ]
Zhu, Peiyong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math, Chengdu 611731, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Li-Yorke chaos; Backward shift; Kothe sequence space; DISTRIBUTIONAL CHAOS; WEIGHTED SHIFTS;
D O I
10.1016/j.topol.2013.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a class of equivalent conditions which give uniform Li-Yorke chaos for backward shift operators on Kothe sequence spaces. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:924 / 929
页数:6
相关论文
共 50 条
  • [31] RELATIONSHIP BETWEEN LI-YORKE CHAOS AND POSITIVE TOPOLOGICAL SEQUENCE ENTROPY IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Sotola, Jakub
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5119 - 5128
  • [32] Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice
    Khellat, Farhad
    Ghaderi, Akashe
    Vasegh, Nastaran
    CHAOS SOLITONS & FRACTALS, 2011, 44 (11) : 934 - 939
  • [33] Li-Yorke chaos in a class of controlled delay difference equations
    Liang, Wei
    Lv, Xiaolin
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [34] Li-Yorke chaos in weak topology of the n-dimensional linear systems
    Zhu, Pengxian
    Yang, Qigui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [35] Li-Yorke Chaos in Partial Differential Equations With or Without Energy Injection
    Zhang, Xu
    Hussan, Iram
    Zhao, Manyu
    Yang, Qigui
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [36] FOR GRAPH MAPS, ONE SCRAMBLED PAIR IMPLIES LI-YORKE CHAOS
    Ruette, Sylvie
    Snoha, L'Ubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2087 - 2100
  • [37] On M-dynamics and Li-Yorke chaos of extensions of minimal dynamics
    Dai, Xiongping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 359 : 152 - 182
  • [38] Li-Yorke chaos in nonautonomous Hopf bifurcation patterns-I
    Nunez, Carmen
    Obaya, Rafael
    NONLINEARITY, 2019, 32 (10) : 3940 - 3980
  • [39] LI-YORKE CHAOS ALMOST EVERYWHERE: ON THE PERVASIVENESS OF DISJOINT EXTREMALLY SCRAMBLED SETS
    Deng, Liuchun
    Khan, M. Ali
    Rajan, Ashvin, V
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (01) : 132 - 143
  • [40] Li-Yorke chaos generation by SICNNs with chaotic/almost periodic postsynaptic currents
    Akhmet, Marat
    Fen, Mehmet Onur
    Kivilcim, Aysegul
    NEUROCOMPUTING, 2016, 173 : 580 - 594