Fractional exponential operators and time-fractional telegraph equation

被引:18
|
作者
Ansari, Alireza [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
来源
关键词
Laplace transform; Mellin transform; partial fractional differential equation; Wright function; DIFFERENTIAL-EQUATIONS; OPERATIONAL METHODS; SYSTEM;
D O I
10.1186/1687-2770-2012-125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Bromwich integral for the inverse Mellin transform is used for finding an integral representation for a fractional exponential operator. This operator can be considered as an approach for solving partial fractional differential equations. Also, application of this operator for obtaining a formal solution of the time-fractional telegraph equation is discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Mohammadi, F.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (02) : 247 - 260
  • [42] Solution of Semi-Boundless Mixed Problem for Time-fractional Telegraph Equation
    Shu-qin Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 611 - 618
  • [43] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [44] A Fully Finite Difference Scheme for Time-Fractional Telegraph Equation Involving Atangana Baleanu Caputo Fractional Derivative
    Kumar K.
    Kumar J.
    Pandey R.K.
    International Journal of Applied and Computational Mathematics, 2022, 8 (4)
  • [45] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [46] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [47] Fundamental solution of the time-fractional telegraph Dirac operator
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7033 - 7050
  • [48] A Novel Solution Approach for Time-Fractional Hyperbolic Telegraph Differential Equation with Caputo Time Differentiation
    Alaroud, Mohammad
    Alomari, Abedel-Karrem
    Tahat, Nedal
    Al-Omari, Shrideh
    Ishak, Anuar
    MATHEMATICS, 2023, 11 (09)
  • [49] Numerical Solution of Time-Fractional Order Telegraph Equation by Bernstein Polynomials Operational Matrices
    Asgari, M.
    Ezzati, R.
    Allahviranloo, T.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [50] Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation model
    Madhukar, Amit
    Park, Yeonsoo
    Kim, Woojae
    Sunaryanto, Hans Julian
    Berlin, Richard
    Chamorro, Leonardo P.
    Bentsman, Joseph
    Ostoja-Starzewski, Martin
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (160)