Fractional exponential operators and time-fractional telegraph equation

被引:18
|
作者
Ansari, Alireza [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
来源
BOUNDARY VALUE PROBLEMS | 2012年
关键词
Laplace transform; Mellin transform; partial fractional differential equation; Wright function; DIFFERENTIAL-EQUATIONS; OPERATIONAL METHODS; SYSTEM;
D O I
10.1186/1687-2770-2012-125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Bromwich integral for the inverse Mellin transform is used for finding an integral representation for a fractional exponential operator. This operator can be considered as an approach for solving partial fractional differential equations. Also, application of this operator for obtaining a formal solution of the time-fractional telegraph equation is discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions
    Wang, Yu-Lan
    Du, Ming-Jing
    Temuer, Chao-Lu
    Tian, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1609 - 1621
  • [12] A class of time-fractional Dirac type operators
    Baleanu, Dumitru
    Restrepo, Joel E.
    Suragan, Durvudkhan
    CHAOS SOLITONS & FRACTALS, 2021, 143 (143)
  • [13] Analytical Solution of Time-Fractional Advection Dispersion Equation
    Salim, Tariq O.
    El-Kahlout, Ahmad
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2009, 4 (01): : 176 - 188
  • [14] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [15] ON THE MAXIMUM PRINCIPLE FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1131 - 1145
  • [16] Numerical solution of time-fractional telegraph equations using wavelet transform
    Mulimani, Mallanagoud
    Kumbinarasaiah, S.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (07) : 2166 - 2189
  • [17] Fractional difference/finite element approximations for the time-space fractional telegraph equation
    Zhao, Zhengang
    Li, Changpin
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) : 2975 - 2988
  • [18] EXACT SOLUTIONS OF TIME-FRACTIONAL HEAT CONDUCTION EQUATION BY THE FRACTIONAL COMPLEX TRANSFORM
    Li, Zheng-Biao
    Zhu, Wei-Hong
    He, Ji-Huan
    THERMAL SCIENCE, 2012, 16 (02): : 335 - 338
  • [19] A high-order space-time spectral method for the distributed-order time-fractional telegraph equation
    Derakhshan, M. H.
    Kumar, Pushpendra
    Salahshour, Soheil
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2778 - 2794