Fractional exponential operators and time-fractional telegraph equation

被引:18
|
作者
Ansari, Alireza [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
来源
BOUNDARY VALUE PROBLEMS | 2012年
关键词
Laplace transform; Mellin transform; partial fractional differential equation; Wright function; DIFFERENTIAL-EQUATIONS; OPERATIONAL METHODS; SYSTEM;
D O I
10.1186/1687-2770-2012-125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Bromwich integral for the inverse Mellin transform is used for finding an integral representation for a fractional exponential operator. This operator can be considered as an approach for solving partial fractional differential equations. Also, application of this operator for obtaining a formal solution of the time-fractional telegraph equation is discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fractional exponential operators and time-fractional telegraph equation
    Alireza Ansari
    Boundary Value Problems, 2012
  • [2] Time-fractional telegraph equation of distributed order in higher dimensions
    Vieira, N.
    Rodrigues, M. M.
    Ferreira, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [3] Neural Network Method for Solving Time-Fractional Telegraph Equation
    Ibrahim, Wubshet
    Bijiga, Lelisa Kebena
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [5] Solution to system of partial fractional differential equations using the fractional exponential operators
    Ansari, A.
    Sheikhani, A. Refahi
    Najafi, H. Saberi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (01) : 119 - 123
  • [6] An analytical solution of the time-fractional telegraph equation describing neutron transport in a nuclear reactor
    Ashraf M. Tawfik
    M. A. Abdou
    Khaled A. Gepreel
    Indian Journal of Physics, 2022, 96 : 1181 - 1186
  • [7] AN EFFECTIVE METHOD FOR SOLVING THE MULTI TIME-FRACTIONAL TELEGRAPH EQUATION OF DISTRIBUTED ORDER BASED ON THE FRACTIONAL ORDER GEGENBAUER WAVELET
    Park, C.
    Rezaei, H.
    Derakhshan, M. H.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2025, 24 (01) : 16 - 37
  • [8] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [9] Boundary value problem for the time-fractional wave equation
    Kosmakova, M. T.
    Khamzeyeva, A. N.
    Kasymova, L. Zh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02): : 124 - 134
  • [10] A class of time-fractional Dirac type operators
    Baleanu, Dumitru
    Restrepo, Joel E.
    Suragan, Durvudkhan
    CHAOS SOLITONS & FRACTALS, 2021, 143