Bias and efficiency of meta-analytic variance estimators in the random-effects model

被引:1044
|
作者
Viechtbauer, W [1 ]
机构
[1] Univ Maastricht, Dept Methodol & Stat, NL-6200 MD Maastricht, Netherlands
关键词
heterogeneity estimation; meta-analysis; random-effects model;
D O I
10.3102/10769986030003261
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The meta-analytic random effects model assumes that the variability in effect size estimates drawn from a set of studies call be decomposed into two parts: heterogeneity due to random population effects and sampling variance. In this context, the usual goal is to estimate the central tendency and the amount of heterogeneity in the population effect sizes. The amount of heterogeneity, in a set of effect sizes has implications regarding the interpretation of the meta-analytic findings and often serves as an indicator for the presence of potential moderator variables. Five population heterogeneity estimators were compared in this article analytically and via Monte Carlo simulations with respect to their bias and efficiency.
引用
收藏
页码:261 / 293
页数:33
相关论文
共 50 条
  • [41] Attentional bias toward and distractibility by sexual cues: A meta-analytic integration
    Strahler, J.
    Baranowski, A. M.
    Walter, B.
    Huebner, N.
    Stark, R.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2019, 105 : 276 - 287
  • [42] A meta-analysis of DEA and SFA studies of the technical efficiency of seaports: A comparison of fixed and random-effects regression models
    Odeck, James
    Brathen, Svein
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2012, 46 (10) : 1574 - 1585
  • [43] Improving the Meta-Analytic Assessment of Effect Size Variance With an Informed Bayesian Prior
    Steel, Piers
    Kammeyer-Mueller, John
    Paterson, Ted A.
    JOURNAL OF MANAGEMENT, 2015, 41 (02) : 718 - 743
  • [44] The application of meta-analytic (multi-level) models with multiple random effects: A systematic review
    Belén Fernández-Castilla
    Laleh Jamshidi
    Lies Declercq
    S. Natasha Beretvas
    Patrick Onghena
    Wim Van den Noortgate
    Behavior Research Methods, 2020, 52 : 2031 - 2052
  • [45] The application of meta-analytic (multi-level) models with multiple random effects: A systematic review
    Fernandez-Castilla, Belen
    Jamshidi, Laleh
    Declercq, Lies
    Beretvas, S. Natasha
    Onghena, Patrick
    Van den Noortgate, Wim
    BEHAVIOR RESEARCH METHODS, 2020, 52 (05) : 2031 - 2052
  • [46] USING PREDICTION INTERVALS FROM RANDOM-EFFECTS META-ANALYSES IN AN ECONOMIC MODEL
    Teljeur, Conor
    O'Neill, Michelle
    Moran, Patrick
    Murphy, Linda
    Harrington, Patricia
    Ryan, Mairin
    Flattery, Martin
    INTERNATIONAL JOURNAL OF TECHNOLOGY ASSESSMENT IN HEALTH CARE, 2014, 30 (01) : 44 - 49
  • [47] Fixed-effect versus random-effects model in meta-regression analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 158 (05) : 770 - 772
  • [48] Confidence intervals for the overall effect size in random-effects meta-analysis
    Sanchez-Meca, Julio
    Marin-Martinez, Fulgencio
    PSYCHOLOGICAL METHODS, 2008, 13 (01) : 31 - 48
  • [49] A note on the graphical presentation of prediction intervals in random-effects meta-analyses
    Guddat C.
    Grouven U.
    Bender R.
    Skipka G.
    Systematic Reviews, 1 (1)
  • [50] DSLE2 random-effects meta-analysis model for high-throughput methylation data
    Wang, Nan
    Zhou, Yang
    Zhu, Fengping
    Jin, Shuilin
    BMC GENOMICS, 2025, 26 (01):