Measuring Bacterial Load and Immune Responses in Mice Infected with Listeria monocytogenes

被引:32
作者
Wang, Nancy [1 ]
Strugnell, Richard [2 ]
Wijburg, Odilia [2 ]
Brodnicki, Thomas [1 ]
机构
[1] Univ Melbourne, Dept Med, St Vincents Inst, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Dept Immunol & Microbiol, Melbourne, Vic 3010, Australia
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2011年 / 54期
基金
英国医学研究理事会;
关键词
Immunology; Issue; 54; Listeria; intracellular bacteria; genetic susceptibility; liver; spleen; blood; FACS analysis; T cells; INNATE IMMUNITY; RESISTANCE; LIVER; SUSCEPTIBILITY; SPLEEN;
D O I
10.3791/3076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular pathogen(1). Mouse studies typically employ intravenous injection of Listeria, which results in systemic infection(2). After injection, Listeria quickly disseminates to the spleen and liver due to uptake by CD8 alpha(+) dendritic cells and Kupffer cells(3,4). Once phagocytosed, various bacterial proteins enable Listeria to escape the phagosome, survive within the cytosol, and infect neighboring cells(5). During the first three days of infection, different innate immune cells (e.g. monocytes, neutrophils, NK cells, dendritic cells) mediate bactericidal mechanisms that minimize Listeria proliferation. CD8(+) T cells are subsequently recruited and responsible for the eventual clearance of Listeria from the host, typically within 10 days of infection(6). Successful clearance of Listeria from infected mice depends on the appropriate onset of host immune responses(6). There is a broad range of sensitivities amongst inbred mouse strains(7,8). Generally, mice with increased susceptibility to Listeria infection are less able to control bacterial proliferation, demonstrating increased bacterial load and/or delayed clearance compared to resistant mice. Genetic studies, including linkage analyses and knockout mouse strains, have identified various genes for which sequence variation affects host responses to Listeria infection(6,8-14). Determination and comparison of infection kinetics between different mouse strains is therefore an important method for identifying host genetic factors that contribute to immune responses against Listeria. Comparison of host responses to different Listeria strains is also an effective way to identify bacterial virulence factors that may serve as potential targets for antibiotic therapy or vaccine design. We describe here a straightforward method for measuring bacterial load (colony forming units [CFU] per tissue) and preparing single-cell suspensions of the liver and spleen for FACS analysis of immune responses in Listeria-infected mice. This method is particularly useful for initial characterization of Listeria infection in novel mouse strains, as well as comparison of immune responses between different mouse strains infected with Listeria. We use the Listeria monocytogenes EGD strain(15) that, when cultured on blood agar, exhibits a characteristic halo zone around each colony due to beta-hemolysis(1) (Figure 1). Bacterial load and immune responses can be determined at any time-point after infection by culturing tissue homogenate on blood agar plates and preparing tissue cell suspensions for FACS analysis using the protocols described below. We would note that individuals who are immunocompromised or pregnant should not handle Listeria, and the relevant institutional biosafety committee and animal facility management should be consulted before work commences.
引用
收藏
页数:10
相关论文
共 22 条
[1]   The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in Immunodeficient mice [J].
Boyartchuk, V ;
Rojas, M ;
Yan, BS ;
Jobe, O ;
Hurt, N ;
Dorfman, DM ;
Higgins, DE ;
Dietrich, WF ;
Kramnik, I .
JOURNAL OF IMMUNOLOGY, 2004, 173 (08) :5112-5120
[2]   Multigenic control of Listeria monocytogenes susceptibility in mice [J].
Boyartchuk, VL ;
Broman, KW ;
Mosher, RE ;
D'Orazio, SEF ;
Starnbach, MN ;
Dietrich, W .
NATURE GENETICS, 2001, 27 (03) :259-260
[3]  
Busch D.H., 2001, CURR PROTOC IMMUNOL, DOI DOI 10.1002/0471142735
[4]   RESISTANCE AND SUSCEPTIBILITY OF MICE TO BACTERIAL-INFECTION - GENETICS OF LISTERIOSIS [J].
CHEERS, C ;
MCKENZIE, IFC .
INFECTION AND IMMUNITY, 1978, 19 (03) :755-762
[5]   Early host-pathogen interactions in the liver and spleen during systemic murine listeriosis: an overview [J].
Conlan, JW .
IMMUNOBIOLOGY, 1999, 201 (02) :178-187
[6]   NEUTROPHILS ARE ESSENTIAL FOR EARLY ANTI-LISTERIA DEFENSE IN THE LIVER, BUT NOT IN THE SPLEEN OR PERITONEAL-CAVITY, AS REVEALED BY A GRANULOCYTE-DEPLETING MONOCLONAL-ANTIBODY [J].
CONLAN, JW ;
NORTH, RJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (01) :259-268
[7]   Innate defenses in the Liver during Listeria infection [J].
Cousens, LP ;
Wing, EJ .
IMMUNOLOGICAL REVIEWS, 2000, 174 :150-159
[8]   ADMINISTRATION OF ANTIGRANULOCYTE MONOCLONAL-ANTIBODY RB6-8C5 PREVENTS EXPRESSION OF ACQUIRED-RESISTANCE TO LISTERIA-MONOCYTOGENES INFECTION IN PREVIOUSLY IMMUNIZED MICE [J].
CZUPRYNSKI, CJ ;
BROWN, JF ;
WAGNER, RD ;
STEINBERG, H .
INFECTION AND IMMUNITY, 1994, 62 (11) :5161-5163
[9]  
Garifulin Oleg, 2005, Briefings in Functional Genomics & Proteomics, V4, P258, DOI 10.1093/bfgp/4.3.258
[10]   Irf3 polymorphism alters induction of interferon beta in response to Listeria monocytogenes infection [J].
Garifulin, Oleg ;
Qi, Zanmei ;
Shen, Haihong ;
Patnala, Sujatha ;
Green, Michael R. ;
Boyartchuk, Victor .
PLOS GENETICS, 2007, 3 (09) :1587-1597