Six-loop ε expansion study of three-dimensional n-vector model with cubic anisotropy

被引:45
|
作者
Adzhemyan, Loran Ts [1 ]
Ivanova, Ella, V [1 ]
Kompaniets, Mikhail, V [1 ]
Kudlis, Andrey [1 ]
Sokolov, Aleksandr, I [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
RENORMALIZATION-GROUP FUNCTIONS; CRITICAL-BEHAVIOR; CRITICAL EXPONENTS; 3; DIMENSIONS; ISING-MODEL; FIXED-POINT; PHASE-TRANSITIONS; STABILITY; SYSTEMS; FIELD;
D O I
10.1016/j.nuclphysb.2019.02.001
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The six-loop expansions of the renormalization-group functions of phi(4) n-vector model with cubic anisotropy are calculated within the minimal subtraction (MS) scheme in 4 - epsilon dimensions. The epsilon expansions for the cubic fixed point coordinates, critical exponents corresponding to the cubic universality class and marginal order parameter dimensionality n(c) separating different regimes of critical behavior are presented. Since the epsilon expansions are divergent numerical estimates of the quantities of interest are obtained employing proper resummation techniques. The numbers found are compared with their counterparts obtained earlier within various field-theoretical approaches and by lattice calculations. In particular, our analysis of n c strengthens the existing arguments in favor of stability of the cubic fixed point in the physical case n = 3. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:332 / 350
页数:19
相关论文
共 50 条
  • [1] Six-loop ε expansion study of three-dimensional O (n) x O (m) spin models
    Kompaniets, M., V
    Kudlis, A.
    Sokolov, A., I
    NUCLEAR PHYSICS B, 2020, 950
  • [2] Six-loop ε expansion of three-dimensional U(n) x U(m) models
    Adzhemyan, L. Ts.
    Ivanova, E. V.
    Kompaniets, M. V.
    Kudlis, A.
    Sokolov, A. I.
    NUCLEAR PHYSICS B, 2022, 975
  • [3] Universal effective couplings of the three-dimensional n-vector model and field theory
    Kudlis, A.
    Sokolov, A., I
    NUCLEAR PHYSICS B, 2020, 950
  • [4] Three-dimensional Z2-gauge N-vector models
    Bonati, Claudio
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2024, 109 (23)
  • [5] The O(n) loop model on a three-dimensional lattice
    Liu, Qingquan
    Deng, Youjin
    Garoni, Timothy M.
    Blote, Henk W. J.
    NUCLEAR PHYSICS B, 2012, 859 (02) : 107 - 128
  • [6] Effective potential of the three-dimensional Ising model: The pseudo-ε expansion study
    Sokolov, A. I.
    Kudlis, A.
    Nikitina, M. A.
    NUCLEAR PHYSICS B, 2017, 921 : 225 - 235
  • [7] Two-loop corrections to the large-order behavior of correlation functions in the one-dimensional N-vector model
    Giorgini, L. T.
    Jentschura, U. D.
    Malatesta, E. M.
    Parisi, G.
    Rizzo, T.
    Zinn-Justin, J.
    PHYSICAL REVIEW D, 2020, 101 (12)
  • [8] Critical phenomena of the majority voter model in a three-dimensional cubic lattice
    Acuna-Lara, Ana L.
    Sastre, Francisco
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [9] Tricritical Point for the Three-Dimensional Disordered Potts Model (q=3) on a Simple Cubic Lattice
    Babaev, A. B.
    Murtazaev, A. K.
    JETP LETTERS, 2017, 105 (06) : 384 - 387
  • [10] Anisotropic perturbations in three-dimensional O(N)-symmetric vector models
    Hasenbusch, Martin
    Vicari, Ettore
    PHYSICAL REVIEW B, 2011, 84 (12)