First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries

被引:15
作者
Chan, Kwai S. [1 ]
Miller, Michael A. [1 ]
Liang, Wuwei [1 ]
Ellis-Terrell, Carol [1 ]
Chan, Candace K. [2 ]
机构
[1] Southwest Res Inst San Antonio, Mech Engn Div, Dept Mat Engn, San Antonio, TX 78238 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Mat Sci & Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
SILICON NANOWIRES; ELECTROCHEMICAL LITHIATION; NEGATIVE ELECTRODES; LITHIUM; SI; CLATHRATE; INSERTION; CAPACITY; 1ST-PRINCIPLES; EXPANSION;
D O I
10.1557/jmr.2016.408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of this investigation was to utilize the first-principles molecular dynamics computational approach to investigate the lithiation characteristics of empty silicon clathrates (Si-46) for applications as potential anode materials in lithium-ion batteries. The energy of formation, volume expansion, and theoretical capacity were computed for empty silicon clathrates as a function of Li. The theoretical results were compared against experimental data of long-term cyclic tests performed on half-cells using electrodes fabricated from Si-46 prepared using a Hofmann-type elimination-oxidation reaction. The comparison revealed that the theoretically predicted capacity (of 791.6 mAh/g) agreed with experimental data (809 mAh/g) that occurred after insertion of 48 Li atoms. The calculations showed that overlithiation beyond 66 Li atoms can cause large volume expansion with a volume strain as high as 120%, which may correlate to experimental observations of decreasing capacities from the maximum at 1030 mAh/g to 553 mA h/g during long-term cycling tests. The finding suggests that overlithiation beyond 66 Li atoms may have caused damage to the cage structure and led to lower reversible capacities.
引用
收藏
页码:3657 / 3665
页数:9
相关论文
共 50 条
  • [21] Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries
    Zhou, Min
    Cai, Tingwei
    Pu, Fan
    Chen, Hao
    Wang, Zhao
    Zhang, Haiyong
    Guan, Shiyou
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) : 3449 - 3455
  • [22] Ti-Fe-Si/C composites as anode materials for high energy li-ion batteries
    Nuhu, Bage Alhamdu
    Adun, Humphrey
    Bamisile, Olusola
    Mukhtar, Mustapha
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 5154 - 5171
  • [23] Microstructural Analysis of Si-Ti-Fe Alloy Anode Materials for Li-ion Secondary Batteries
    Chae, Jeong Eun
    Yang, Jun-Mo
    Park, Kyung Jin
    Yoo, Jung Ho
    Park, Yun Chang
    Sung, Min-Suk
    Yu, Hyun-Jong
    Kim, Sung-Soo
    KOREAN JOURNAL OF METALS AND MATERIALS, 2013, 51 (06): : 429 - 436
  • [24] Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study
    Li, Meng
    Liu, Yue-Jie
    Zhao, Jing-xiang
    Wang, Xiao-guang
    APPLIED SURFACE SCIENCE, 2015, 345 : 337 - 343
  • [25] Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
    Zhang, Miao
    Hou, Xianhua
    Wang, Jie
    Li, Min
    Hu, Shejun
    Shao, Zongping
    Liu, Xiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 588 : 206 - 211
  • [26] First-principles study of blue phosphorene and graphene intralayer heterostructure as anode materials for rechargeable Li-ion batteries
    Sui, Chunjie
    Ma, Jiale
    Zhao, Songtao
    Li, Zhenyu
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (05) : 653 - 661
  • [27] Effect of binders on performance of Si/C composite as anode for Li-ion batteries
    Su, Mingru
    Liu, Shuai
    Wan, Huafeng
    Dou, Aichun
    Liu, Ke
    Liu, Yunjian
    IONICS, 2019, 25 (05) : 2103 - 2109
  • [28] First-principles study of MoSSe_graphene heterostructures as anode for Li-ion batteries
    Zhou, Sheng-Hua
    Zhang, Jing
    Ren, Zhen-Zhen
    Gu, Jia-Fang
    Ren, Yu-Rong
    Huang, Shuping
    Lin, Wei
    Li, Yi
    Zhang, Yong-Fan
    Chen, Wen-Kai
    CHEMICAL PHYSICS, 2020, 529
  • [29] A concise review on the advancement of anode materials for Li-ion batteries
    Saritha, D.
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 726 - 730
  • [30] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):