Matter wave soliton solutions of the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential

被引:3
|
作者
Liu, Yifang [1 ]
Li, Guo-Rong [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Econ, Beijing 100081, Peoples R China
[2] Dalian Med Univ, Dept Hlth Stat, Coll Publ Hlth, Dalian 116044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic and quintic nonlinearities; Anharmonic potential; Similarity transformation; Localized stationary solution; Matter wave soliton; Linear stability; EXTENDED TANH METHOD;
D O I
10.1016/j.amc.2012.10.110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential is studied both analytically and numerically. As a result, two families of matter wave soliton solutions are obtained and their stability is analyzed by linear stability analysis and dynamical evolutions. It is shown that the spatially inhomogeneous cubic-quintic nonlinearities and the anharmonic potential can support stable matter wave solitons. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4847 / 4852
页数:6
相关论文
共 50 条
  • [41] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [42] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [43] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [44] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [45] Soliton solutions of cubic-quintic nonlinear Schrodinger equation with combined time-dependent magnetic-optical potentials
    Li, H. M.
    Zhao, J. Q.
    You, L. Y.
    INDIAN JOURNAL OF PHYSICS, 2015, 89 (10) : 1065 - 1075
  • [46] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [47] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [48] Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method
    Seadawy, Aly
    Sayed, A.
    FILOMAT, 2017, 31 (13) : 4199 - 4208
  • [49] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [50] Optical solitary wave solutions to nonlinear Schrodinger equation with cubic-quintic nonlinearity in non-Kerr media
    Yan, ZY
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (09) : 2397 - 2401