AN OPTIMIZED SPARSE APPROXIMATE MATRIX MULTIPLY FOR MATRICES WITH DECAY

被引:22
|
作者
Bock, Nicolas [1 ]
Challacombe, Matt [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
关键词
sparse approximate matrix multiply; sparse linear algebra; SpAMM; reduced complexity algorithm; quantum chemistry; N-body; matrices with decay; LINEAR SCALING COMPUTATION; ADAPTIVE MESH REFINEMENT; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-MATRIX; FOCK MATRIX; RECENT PROGRESS; ERROR ESTIMATE; MULTIPLICATION; PERFORMANCE; ALGORITHMS;
D O I
10.1137/120870761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an optimized single-precision implementation of the sparse approximate matrix multiply (SpAMM) [M. Challacombe and N. Bock, arXiv 1011.3534, 2010], a fast algorithm for matrix-matrix multiplication for matrices with decay that achieves an O(n log n) computational complexity with respect to matrix dimension n. We find that the max norm of the error achieved with a SpAMM tolerance below 2 x 10(-8) is lower than that of the single-precision general matrix-matrix multiply (SGEMM) for dense quantum chemical matrices, while outperforming SGEMM with a crossover already for small matrices (n similar to 1000). Relative to naive implementations of SpAMM using Intel's Math Kernel Library or AMD's Core Math Library, our optimized version is found to be significantly faster. Detailed performance comparisons are made for quantum chemical matrices with differently structured sub-blocks. Finally, we discuss the potential of improved hardware prefetch to yield 2x to 3x speedups.
引用
收藏
页码:C72 / C98
页数:27
相关论文
共 50 条
  • [31] Efficient image fusion with approximate sparse representation
    Yang Bin
    Yang Chao
    Huang Guoyu
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (04)
  • [32] Follow the Approximate Sparse Leader for No-Regret Online Sparse Linear Approximation
    Mukhopadhyay, Samrat
    Mukherjee, Debasmita
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 951 - 955
  • [33] Arrow Matrix Decomposition: A Novel Approach for Communication-Efficient Sparse Matrix Multiplication
    Gianinazzi, Lukas
    Ziogas, Alexandros Nikolaos
    Huang, Langwen
    Luczynski, Piotr
    Ashkboosh, Saleh
    Scheidl, Florian
    Carigiet, Armon
    Ge, Chio
    Abubaker, Nabil
    Besta, Maciej
    Ben-Nun, Tal
    Hoefler, Torsten
    PROCEEDINGS OF THE 29TH ACM SIGPLAN ANNUAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, PPOPP 2024, 2024, : 404 - 416
  • [34] Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices
    Berry, MW
    Pulatova, SA
    Stewart, GW
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (02): : 252 - 269
  • [35] Unique sparse decomposition of low rank matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [36] Unique Sparse Decomposition of Low Rank Matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2452 - 2484
  • [37] A residual based sparse approximate inverse preconditioning procedure for large sparse linear systems
    Jia, Zhongxiao
    Kang, Wenjie
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (02)
  • [38] FSAIPACK: A Software Package for High-Performance Factored Sparse Approximate Inverse Preconditioning
    Janna, Carlo
    Ferronato, Massimiliano
    Sartoretto, Flavio
    Gambolati, Giuseppe
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (02):
  • [39] Unitary Approximate Message Passing for Sparse Bayesian Learning
    Luo, Man
    Guo, Qinghua
    Jin, Ming
    Eldar, Yonina C.
    Huang, Defeng
    Meng, Xiangming
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 6023 - 6038
  • [40] Efficient Dense And Sparse Matrix Multiplication On GP-SIMD
    Morad, Amir
    Yavits, Leonid
    Ginosar, Ran
    2014 24TH INTERNATIONAL WORKSHOP ON POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION (PATMOS), 2014,