AN OPTIMIZED SPARSE APPROXIMATE MATRIX MULTIPLY FOR MATRICES WITH DECAY

被引:22
|
作者
Bock, Nicolas [1 ]
Challacombe, Matt [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
关键词
sparse approximate matrix multiply; sparse linear algebra; SpAMM; reduced complexity algorithm; quantum chemistry; N-body; matrices with decay; LINEAR SCALING COMPUTATION; ADAPTIVE MESH REFINEMENT; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-MATRIX; FOCK MATRIX; RECENT PROGRESS; ERROR ESTIMATE; MULTIPLICATION; PERFORMANCE; ALGORITHMS;
D O I
10.1137/120870761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an optimized single-precision implementation of the sparse approximate matrix multiply (SpAMM) [M. Challacombe and N. Bock, arXiv 1011.3534, 2010], a fast algorithm for matrix-matrix multiplication for matrices with decay that achieves an O(n log n) computational complexity with respect to matrix dimension n. We find that the max norm of the error achieved with a SpAMM tolerance below 2 x 10(-8) is lower than that of the single-precision general matrix-matrix multiply (SGEMM) for dense quantum chemical matrices, while outperforming SGEMM with a crossover already for small matrices (n similar to 1000). Relative to naive implementations of SpAMM using Intel's Math Kernel Library or AMD's Core Math Library, our optimized version is found to be significantly faster. Detailed performance comparisons are made for quantum chemical matrices with differently structured sub-blocks. Finally, we discuss the potential of improved hardware prefetch to yield 2x to 3x speedups.
引用
收藏
页码:C72 / C98
页数:27
相关论文
共 50 条
  • [1] A Sparse Matrix Vector Multiply Accelerator for Support Vector Machine
    Nurvitadhi, Eriko
    Mishra, Asit
    Marr, Debbie
    2015 INTERNATIONAL CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2015, : 109 - 116
  • [2] Approximate Multiplication of Sparse Matrices with Limited Space
    Wan, Yuanyu
    Zhang, Lijun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10058 - 10066
  • [3] DECAY BOUNDS AND O(n) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES
    Benzi, Michele
    Razouk, Nader
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 28 : 16 - 39
  • [4] Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs
    Choi, Jee W.
    Singh, Amik
    Vuduc, Richard W.
    ACM SIGPLAN NOTICES, 2010, 45 (05) : 115 - 125
  • [5] A Library for Pattern-based Sparse Matrix Vector Multiply
    Belgin, Mehmet
    Back, Godmar
    Ribbens, Calvin J.
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2011, 39 (01) : 62 - 87
  • [6] Semiempirical Molecular Dynamics (SEMD) I: Midpoint-Based Parallel Sparse Matrix-Matrix Multiplication Algorithm for Matrices with Decay
    Weber, Valery
    Laino, Teodoro
    Pozdneev, Alexander
    Feduova, Irina
    Curioni, Alessandro
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (07) : 3145 - 3152
  • [7] Sparse approximate matrix-matrix multiplication for density matrix purification with error control
    Artemov, Anton G.
    Rubensson, Emanuel H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [8] Massively parallel sparse matrix function calculations with NTPoly
    Dawson, William
    Nakajima, Takahito
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 225 : 154 - 165
  • [9] A Monte Carlo Approach to Sparse Approximate Inverse Matrix Computations
    Strassburg, J.
    Alexandrov, N.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2307 - 2316
  • [10] A two-phase preconditioning strategy of sparse approximate inverse for indefinite matrices
    Lee, Eun-Joo
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1152 - 1159