The influence of non-ionic surfactants on electrosynthesis in extended channel, narrow gap electrolysis cells

被引:10
作者
Folgueiras-Amador, Ana A. [1 ]
Jolley, Katie E. [1 ]
Birkin, Peter R. [1 ]
Brown, Richard C. D. [1 ]
Pletcher, Derek [1 ]
Pickering, Stephen [2 ]
Sharabi, Medhat [3 ,5 ]
de Frutos, Oscar [4 ]
Mateos, Carlos [4 ]
Rincon, Juan A. [4 ]
机构
[1] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
[2] Univ Nottingham, Fac Engn, Jubilee Campus, Nottingham NG7 2GX, England
[3] Univ Nottingham, Gas Turbines & Transmiss Res Ctr, Nottingham NG7 2TU, England
[4] Ctr Invest Lilly SA, Avda Ind 30, Alcobendas Madrid 28108, Spain
[5] Mansoura Univ, Mansoura 35516, Egypt
基金
英国工程与自然科学研究理事会;
关键词
Electrolysis; Mass transfer; Gas evolution; Flow reactors; Anodic oxidation; Surfactants; HYDRODYNAMICS; BUBBLES;
D O I
10.1016/j.elecom.2019.01.009
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It is demonstrated that the addition of a non-ionic surfactant (Triton X-100 or Brij L23) to the electrolyte medium leads to a significant improvement to the current efficiency for the methoxylation of N-formylpyrrolidine in a flow electrolysis cell with a horizontal, extended channel length and narrow interelectrode gap (the Ammonite 8). In the presence of Brij L23, the fractional current efficiency is much improved and approaches 1.0 while maintaining a fractional selectivity of 0.99 at a very high conversion in a single pass. The improvement in current efficiency is ascribed to a decrease in the bubble size of the H-2 gas evolved at the counter electrode leading to an enhancement in the mass transport regime in the flow stream through the extended channel with millimetre dimensions.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 19 条
[1]  
ANSYS Fluent Theory Guide ANSYS Inc, 2018, ANSYS FLUENT THEORY, V19, P10
[2]  
Asari M., 2014, J ADV CHEM ENG, V4, P101
[3]  
Asari Maedeh., 2013, American Journal of Chemical Engineering, V1, P50, DOI DOI 10.11648/J.AJCHE.20130102.14
[4]   Applications of Flow Microreactors in Electrosynthetic Processes [J].
Atobe, Mahito ;
Tateno, Hiroyuki ;
Matsumura, Yoshimasa .
CHEMICAL REVIEWS, 2018, 118 (09) :4541-4572
[5]   Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies [J].
El-Askary, W. A. ;
Sakr, I. M. ;
Ibrahim, K. A. ;
Balabel, A. .
ENERGY, 2015, 90 :722-737
[6]   An extended channel length microflow electrolysis cell for convenient laboratory synthesis [J].
Green, Robert A. ;
Brown, Richard C. D. ;
Pletcher, Derek ;
Harji, Bashir .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 73 :63-66
[7]   Electrosynthesis in Extended Channel Length Microfluidic Electrolysis Cells [J].
Green, Robert A. ;
Brown, Richard C. D. ;
Pletcher, Derek .
JOURNAL OF FLOW CHEMISTRY, 2016, 6 (03) :191-197
[8]   A Microflow Electrolysis Cell for Laboratory Synthesis on the Multigram Scale [J].
Green, Robert A. ;
Brown, Richard C. D. ;
Pletcher, Derek .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2015, 19 (10) :1424-1427
[9]   Understanding the Performance of a Microfluidic Electrolysis Cell for Routine Organic Electrosynthesis [J].
Green, Robert A. ;
Brown, Richard C. D. ;
Pletcher, Derek .
JOURNAL OF FLOW CHEMISTRY, 2015, 5 (01) :31-36
[10]   Continuous direct anodic flow oxidation of aromatic hydrocarbons to benzyl amides [J].
Kabeshov, Mikhail A. ;
Musio, Biagia ;
Ley, Steven V. .
REACTION CHEMISTRY & ENGINEERING, 2017, 2 (06) :822-825