Ricci solitons on locally conformally flat hypersurfaces in space forms

被引:12
作者
Cho, Jong Taek [1 ]
Kimura, Makoto [2 ]
机构
[1] Chonnam Natl Univ, Dept Math, Inst Basic Sci, Kwangju 500757, South Korea
[2] Shimane Univ, Fac Sci & Engn, Dept Math, Matsue, Shimane 6908504, Japan
基金
新加坡国家研究基金会;
关键词
Locally conformally flat hypersurfaces; Ricci solitons; Rotational hypersurfaces; GRADIENT SHRINKING SOLITONS; CLASSIFICATION;
D O I
10.1016/j.geomphys.2012.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Ricci solitons on locally conformally flat hypersurfaces M-n in space forms (M) over tilde (n+1)(c) of constant sectional curvature c with potential vector field a principal curvature eigenvector of multiplicity one. We show that in Euclidean space, M-n is a hypersurface of revolution given in terms of a solution of some non-linear ODE. Hence there exists infinitely many mutually non-congruent Ricci solitons of this type. Furthermore when c >= 0 and M-n is complete, the Ricci soliton is gradient and in the case it is shrinking, M-n must be the product of the real line and the (n - 1)-sphere. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1882 / 1891
页数:10
相关论文
共 18 条
  • [1] Three-dimensional Ricci solitons which project to surfaces
    Baird, Paul
    Danielo, Laurent
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 : 65 - 91
  • [2] Bryant R.L., Ricci flow solitons in dimension three with SO(3)-symmetries
  • [3] ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2377 - 2391
  • [4] ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Xiaodong
    Wang, Biao
    Zhang, Zhou
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) : 269 - 282
  • [5] Chow B., 2004, Mathematical Surveys and Monographs, V110
  • [6] Derdzinski A., COMPACT RICCI SOLITO
  • [7] Ricci solitons: the equation point of view
    Eminenti, Manolo
    La Nave, Gabriele
    Mantegazza, Carlo
    [J]. MANUSCRIPTA MATHEMATICA, 2008, 127 (03) : 345 - 367
  • [8] Hamilton R.S., 1988, MATH GEN RELATIVITY, V71, P237
  • [9] RICCI SOLITONS ON COMPACT 3-MANIFOLDS
    IVEY, T
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) : 301 - 307
  • [10] Koiso N., 1990, Recent Topics in Diff Anal Geom, V18-I, P327