Geometric considerations for the 3D printing of components using fused filament fabrication

被引:5
|
作者
Israel Aguilar-Duque, Julian [1 ]
Luis Garcia-Alcaraz, Jorge [2 ]
Luis Hernandez-Arellano, Juan [2 ]
机构
[1] Univ Autonoma Baja California, Fac Ingn Arquitectura & Diseno, Carretera Transpeninsular Ensenada Tijuana 3917, Ensenada 22860, Baja California, Mexico
[2] Univ Autonoma Ciudad Juarez, Ist Ingn & Tecnol, Av Del Charro 450 Col Partido Romero, Ciudad Juarez 32310, Chihuahua, Mexico
关键词
Fused filament fabrication; Geometric components; Printing defects; DIMENSIONAL ACCURACY; DEPOSITION; INNOVATION; PARTS; CONSTRUCTION; TECHNOLOGY; COMPOSITES; ADOPTION; DESIGN; IMPACT;
D O I
10.1007/s00170-020-05523-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Demand in 3D printing products using fused filament fabrication (FFF) in industry has been growth a lot with 55% in development of prototypes, 43% in production, and 41% in conceptual models for testing. However, information regarding the manufacturing considerations of geometry-restricted components is still an opportunity area, generating printed components with quality defects. This article is aimed to present some characteristics in geometric components that should be considered during the developing process for components to be produced in FFF to avoid in quality defects. The methodology used considers three stages: first, the reproduction of basic geometric elements and a template that integrates elements with software design; second, the component analysis and the template with software for pre-processing of components, and third, the printing of a template for assumption validation identified in stage two. Findings obtained indicate that the spherical components are geometries with the greatest possibility of defect generation during the FFF printing process. The complexity of the template allowed to identify that the template orientation is a factor that generates defects; for example, with 0 degrees orientation regarding the X axis generates 40,008 risk points for defect and for 30 degrees orientation there are 6658 risk point defects. Therefore, it is advisable to consider avoid geometries associated with sphericity and cylindrical characteristics as possible in the design processes, since these geometries require specific processes to achieve the finishing quality.
引用
收藏
页码:171 / 186
页数:16
相关论文
共 50 条
  • [31] From the development of low-cost filament to 3D printing ceramic parts obtained by fused filament fabrication
    Anton Smirnov
    Svetlana Terekhina
    Tatiana Tarasova
    Lamine Hattali
    Sergey Grigoriev
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 511 - 529
  • [32] High-Impact Polystyrene Reinforced with Reduced Graphene Oxide as a Filament for Fused Filament Fabrication 3D Printing
    Sieradzka, Marta
    Fabia, Janusz
    Binias, Dorota
    Graczyk, Tadeusz
    Fryczkowski, Ryszard
    MATERIALS, 2021, 14 (22)
  • [33] Automatic strengthening in thickness direction using lap joint of carbon fiber for fused filament fabrication 3D printing
    Kajimoto, Jumpei
    Fujii, Aiko
    Maruyama, Yusuke
    Kajita, Hideyuki
    Koyanagi, Jun
    Matsuzaki, Ryosuke
    COMPOSITE STRUCTURES, 2023, 303
  • [34] Fused Filament Fabrication 3-D Printing of Reactive Porous Media
    Anjikar, Ishan S.
    Wales, Shelby
    Beckingham, Lauren E.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (09)
  • [35] Soft dielectric actuator produced by multi-material fused filament fabrication 3D printing
    Raguz, Ivan
    Berer, Michael
    Fleisch, Mathias
    Holzer, Clemens
    Brancart, Joost
    Vanderborght, Bram
    Schloegl, Sandra
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (06) : 1967 - 1978
  • [36] Estimation and validation of elastic constants in fused filament fabrication 3D printing: From mesoscale to macroscale
    Arias-Blanco, A.
    Alvarez-Blanco, M.
    Belda, R.
    Marco, M.
    MATERIALS & DESIGN, 2024, 246
  • [37] A 3D weaving infill pattern for fused filament fabrication
    Yao, Yuan
    Ding, Cheng
    Aburaia, Mohamed
    Lackner, Maximilian
    He, Lanlan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 117 (9-10) : 3101 - 3114
  • [38] Metallization of Thermoplastic Polymers and Composites 3D Printed by Fused Filament Fabrication
    Romani, Alessia
    Mantelli, Andrea
    Tralli, Paolo
    Turri, Stefano
    Levi, Marinella
    Suriano, Raffaella
    TECHNOLOGIES, 2021, 9 (03)
  • [39] An apparatus designed for coating and coloration of filaments used in fused filament fabrication (Fff) 3d printing
    Chohan P.
    Yadav A.
    Kumar R.
    Kumar R.
    Chohan J.S.
    Recent Patents on Mechanical Engineering, 2021, 14 (04) : 541 - 549
  • [40] Effect of 3D Printing Parameters on the Fatigue Properties of Parts Manufactured by Fused Filament Fabrication: A Review
    Bakhtiari, Hamed
    Aamir, Muhammad
    Tolouei-Rad, Majid
    APPLIED SCIENCES-BASEL, 2023, 13 (02):