Adaptive finite elements for elastic bodies in contact

被引:47
|
作者
Carstensen, C
Scherf, O
Wriggers, P
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Inst Baumech & Numer Math, D-30167 Hannover, Germany
关键词
contact of bodies; a posteriori error estimate; variational inequality; regularization; penalty method;
D O I
10.1137/S1064827595295350
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To avoid interpenetration of matter under the small strain assumption, the linear contact condition is frequently applied where the distance of bodies is controlled only along a certain direction. The standard direction is the normal on the surface where interpenetration might occur. In this paper we allow other directions as well. We address questions such as the correct mathematical model, existence of solutions, the penalty method for regularization of the variational inequality, finite element discretization, and a priori and a posteriori error estimates, but exclude the error of penalization. The computable upper error bound leads to a criterion for automatic mesh-refinements within a finite element method. Numerical simulations of the Hertzian contact problem and a supported cantilever beam are included.
引用
收藏
页码:1605 / 1626
页数:22
相关论文
共 50 条
  • [31] Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua
    Ju, Xiaozhe
    Mahnken, Rolf
    Xu, Yangjian
    Liang, Lihua
    COMPUTATIONAL MECHANICS, 2022, 69 (03) : 847 - 863
  • [32] Analysis of thermoviscoelastic frictionless contact of layered bodies
    Mahmoud, F. F.
    El-Shafei, A. G.
    Attia, M. A.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (03) : 307 - 318
  • [33] Study of the dynamic contact interaction of deformable bodies
    O. V. Bychek
    V. M. Sadovskii
    Journal of Applied Mechanics and Technical Physics, 1998, 39 (4) : 628 - 633
  • [34] Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua
    Xiaozhe Ju
    Rolf Mahnken
    Yangjian Xu
    Lihua Liang
    Computational Mechanics, 2022, 69 : 847 - 863
  • [35] CONTACT INTERACTION OF BODIES ALONG CONGRUENT SURFACES
    Tkachuk, Mykola M.
    Zinchenko, Olena
    Grabovskiy, Andriy
    Tkachuk, Mykola A.
    Sierykov, Volodymyr
    Domina, Natalia
    Hrechka, Iryna
    International Journal of Mechatronics and Applied Mechanics, 2024, 2024 (17): : 32 - 43
  • [36] JUNCTION PROBLEM FOR EULER-BERNOULLI AND TIMOSHENKO ELASTIC INCLUSIONS IN ELASTIC BODIES
    Khludnev, A. M.
    Popova, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (04) : 705 - 718
  • [37] Junction problem for rigid and semirigid inclusions in elastic bodies
    Alexander Khludnev
    Tatiana Popova
    Archive of Applied Mechanics, 2016, 86 : 1565 - 1577
  • [38] On the equilibrium of elastic bodies containing thin rigid inclusions
    G. Leugering
    A. M. Khludnev
    Doklady Physics, 2010, 55 : 18 - 22
  • [39] On modeling thin inclusions in elastic bodies with a damage parameter
    Khludnev, A. M.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (09) : 2742 - 2753
  • [40] Optimal Control of Inclusion and Crack Shapes in Elastic Bodies
    Khludnev, A.
    Leugering, G.
    Specovius-Neugebauer, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (01) : 54 - 78