Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3/Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution

被引:317
作者
Li, Xiaopeng [1 ]
Wang, Yang [1 ]
Wang, Jiajun [1 ]
Da, Yumin [1 ]
Zhang, Jinfeng [1 ]
Li, Lanlan [2 ]
Zhong, Cheng [1 ]
Deng, Yida [1 ]
Han, Xiaopeng [1 ]
Hu, Wenbin [1 ,3 ]
机构
[1] Tianjin Univ, Minist Educ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat,Key Lab Adv, Tianjin 300350, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electrocatalysts; hydrogen evolution reaction; heterointerfaces; oxygen evolution reaction; transition metal oxides; water-splitting; HIGHLY EFFICIENT; NANOSHEET-ARRAY; NI; PERFORMANCE; VACANCY; MOO3; WO3;
D O I
10.1002/adma.202003414
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploring earth-abundant and highly efficient electrocatalysts is critical for further development of water electrolyzer systems. Integrating bifunctional catalytically active sites into one multi-component might greatly improve the overall water-splitting performance. In this work, amorphous NiO nanosheets coupled with ultrafine Ni and MoO(3)nanoparticles (MoO3/Ni-NiO), which contains two heterostructures (i.e., Ni-NiO and MoO3-NiO), is fabricated via a novel sequential electrodeposition strategy. The as-synthesized MoO3/Ni-NiO composite exhibits superior electrocatalytic properties, affording low overpotentials of 62 mV at 10 mA cm(-2)and 347 mV at 100 mA cm(-2)for catalyzing the hydrogen and the oxygen evolution reaction (HER/OER), respectively. Moreover, the MoO3/Ni-NiO hybrid enables the overall alkaline water-splitting at a low cell voltage of 1.55 V to achieve 10 mA cm(-2)with outstanding catalytic durability, significantly outperforming the noble-metal catalysts and many materials previously reported. Experimental and theoretical investigations collectively demonstrate the generated Ni-NiO and MoO3-NiO heterostructures significantly reduce the energetic barrier and act as catalytically active centers for selective HER and OER, synergistically accelerating the overall water-splitting process. This work helps to fundamentally understand the heterostructure-dependent mechanism, providing guidance for the rational design and oriented construction of hybrid nanomaterials for diverse catalytic processes.
引用
收藏
页数:10
相关论文
共 75 条
  • [1] Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment
    Anantharaj, S.
    Ede, S. R.
    Karthick, K.
    Sankar, S. Sam
    Sangeetha, K.
    Karthik, P. E.
    Kundu, Subrata
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) : 744 - 771
  • [2] Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: An effective method of electronic waste management by utilizing waste Cu cable wires
    Babar, Pravin
    Lokhande, Abhishek
    Karade, Vijay
    Pawar, Bharati
    Gang, Myeng Gil
    Pawar, Sambhaji
    Kim, Jin Hyeok
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 537 : 43 - 49
  • [3] Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting
    Chen, Gao-Feng
    Ma, Tian Yi
    Liu, Zhao-Qing
    Li, Nan
    Su, Yu-Zhi
    Davey, Kenneth
    Qiao, Shi-Zhang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) : 3314 - 3323
  • [4] Boosting Electrocatalytic Oxygen Evolution by Cation Defect Modulation via Electrochemical Etching
    Chen, Xiang
    Yu, Meng
    Yan, Zhenhua
    Guo, Weiyi
    Fan, Guilan
    Ni, Youxuan
    Liu, Jiuding
    Zhang, Wei
    Xie, Wei
    Cheng, Fangyi
    Chen, Jun
    [J]. CCS CHEMISTRY, 2021, 3 (01): : 675 - 685
  • [5] Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
  • [6] Monolithic nanoporous Ni-Fe alloy by dealloying laser processed Ni-Fe-Al as electrocatalyst toward oxygen evolution reaction
    Cui, Xiaodan
    Zhang, Boliang
    Zeng, Congyuan
    Wen, Hao
    Guo, Shengmin
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) : 15234 - 15244
  • [7] Laser processed Ni-Fe alloys as electrocatalyst toward oxygen evolution reaction
    Cui, Xiaodan
    Zhang, Boliang
    Zeng, Congyuan
    Wen, Hao
    Yao, Hong
    Guo, S. M.
    [J]. MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [8] Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction
    Deng, Jiao
    Ren, Pengju
    Deng, Dehui
    Bao, Xinhe
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) : 2100 - 2104
  • [9] A hierarchical oxygen vacancy-rich WO3 with "nanowire-array-on-nanosheet-array" structure for highly efficient oxygen evolution reaction
    Diao, Jinxiang
    Yuan, Wenyu
    Qiu, Yu
    Cheng, Laifei
    Guo, Xiaohui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (12) : 6730 - 6739
  • [10] Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane
    Dou, Jian
    Zhang, Riguang
    Hao, Xiaobin
    Bao, Zhenghong
    Wu, Tianpin
    Wang, Baojun
    Yu, Fei
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 254 : 612 - 623