The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study)

被引:44
作者
Chiappa, Valentina [1 ]
Bogani, Giorgio [1 ]
Interlenghi, Matteo [2 ]
Salvatore, Christian [3 ]
Bertolina, Francesca [1 ]
Sarpietro, Giuseppe [1 ]
Signorelli, Mauro [1 ]
Castiglioni, Isabella [4 ]
Raspagliesi, Francesco [1 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori Milano, Dept Gynecol Oncol, Via Venezian 1, I-20133 Milan, Italy
[2] CNR, Inst Mol Bioimaging & Physiol, Milan, Italy
[3] DeepTrace Technol SRL, Milan, Italy
[4] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy
关键词
Radiomics; Ultrasound; Ovarian cancer; Risk of malignancy; Ovarian masses; Predictive model; ADNEX MODEL; EXTERNAL VALIDATION; CANCER; ULTRASOUND; RADIOGENOMICS;
D O I
10.1007/s40477-020-00503-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To develop and evaluate the performance of a radiomic and machine learning model applied to ultrasound images in predicting the risk of malignancy of ovarian masses (OMs). Methods Single-center retrospective evaluation of consecutive patients who underwent transvaginal ultrasound (US) with images storage and surgery for ovarian masses. Radiomics methodology was applied to US images according to the International Biomarker Standardization Initiative guidelines. OMs were divided into three homogeneous groups: solid, cystic and motley. TRACE4 (c) radiomic platform was used thus obtaining a full-automatic radiomic workflow. Three different classification systems were created and accuracy, sensitivity, specificity, AUC and standard deviation were defined for each group. Results A total of 241 women were recruited. OMs were divided in the three groups: 95 (39.5%) solid, 66 (27.5%) cystic, 80 (33%) motley. For solid OMs, 269 radiomic features were used for the training-validation-testing of the model with accuracy 80%, sensitivity 78%, specificity 83%, AUC 87%. For cystic OMs, 278 radiomic features were used for the training-validation-testing of the model with accuracy 87%, sensitivity 75%, specificity 90%, AUC 88%. For mixed OMs, 306 radiomic features were used for the training-validation-testing of the model with accuracy 81%, sensitivity 81%, specificity 81%, AUC 89%. Conclusion Radiomics is a promising tool in improving preoeprative work-up of women diagnosed with OMs. Even in the absence of the subjective impression of expert ultrasound examiner, radiomics allows to easily identify patients with ovarian cancer. Future validation studies on larger series are needed.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 31 条
[1]   Ovarian Tissue Characterization in Ultrasound: A Review [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Swapna, G. ;
Saba, Luca ;
Guerriero, Stefano ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2015, 14 (03) :251-261
[2]  
Acharya UR, 2012, IEEE ENG MED BIO, P4446, DOI 10.1109/EMBC.2012.6346953
[3]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[4]  
[Anonymous], ARXIV161207003
[5]   Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study [J].
Bagnoli, Marina ;
Canevari, Silvana ;
Califano, Daniela ;
Losito, Simona ;
Di Maio, Massimo ;
Raspagliesi, Francesco ;
Carcangiu, Maria Luisa ;
Toffoli, Giuseppe ;
Cecchin, Erika ;
Sorio, Roberto ;
Canzonieri, Vincenzo ;
Russo, Daniela ;
Scognamiglio, Giosue ;
Chiappetta, Gennaro ;
Baldassarre, Gustavo ;
Lorusso, Domenica ;
Scambia, Giovanni ;
Zannoni, Gian Franco ;
Savarese, Antonella ;
Carosi, Mariantonia ;
Scollo, Paolo ;
Breda, Enrico ;
Murgia, Viviana ;
Perrone, Francesco ;
Pignata, Sandro ;
De Cecco, Loris ;
Mezzanzanica, Delia .
LANCET ONCOLOGY, 2016, 17 (08) :1137-1146
[6]  
FDA, 2016, FDA REC US SCREEN TE
[7]   Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study [J].
Froyman, Wouter ;
Landolfo, Chiara ;
De Cock, Bavo ;
Wynants, Laure ;
Sladkevicius, Povilas ;
Testa, Antonia Carla ;
Van Holsbeke, Caroline ;
Domali, Ekaterini ;
Fruscio, Robert ;
Epstein, Elisabeth ;
dos Santos Bernardo, Maria Jose ;
Franchi, Dorella ;
Kudla, Marek Jerzy ;
Chiappa, Valentina ;
Alcazar, Juan Luis ;
Leone, Francesco Paolo Giuseppe ;
Buonomo, Francesca ;
Hochberg, Lauri ;
Coccia, Maria Elisabetta ;
Guerriero, Stefano ;
Deo, Nandita ;
Jokubkiene, Ligita ;
Kayser, Jeroen ;
Coosemans, An ;
Vergote, Ignace ;
Verbakel, Jan Yvan ;
Bourne, Tom ;
Van Calster, Ben ;
Valentin, Lil ;
Timmerman, Dirk .
LANCET ONCOLOGY, 2019, 20 (03) :448-458
[8]  
Kaijser J, 2015, FACTS VIEWS VIS OBGY, V7, P42
[9]   Quantitative ultrasound of trapezius muscle involvement in myofascial pain: comparison of clinical and healthy population using texture analysis [J].
Kumbhare, Dinesh ;
Shaw, Saurabh ;
Ahmed, Sara ;
Noseworthy, Michael D. .
JOURNAL OF ULTRASOUND, 2020, 23 (01) :23-30
[10]   A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study [J].
Lucidarme, Olivier ;
Akakpo, Jean-Paul ;
Granberg, Seth ;
Sideri, Mario ;
Levavi, Hanoch ;
Schneider, Achim ;
Autier, Philippe ;
Nir, Dror ;
Bleiberg, Harry .
EUROPEAN RADIOLOGY, 2010, 20 (08) :1822-1830