Reliability and Maintenance Modeling for Dependent Competing Failure Processes With Shifting Failure Thresholds

被引:166
|
作者
Jiang, Lei [1 ]
Feng, Qianmei [1 ]
Coit, David W. [2 ]
机构
[1] Univ Houston, Dept Ind Engn, Houston, TX 77004 USA
[2] Rutgers State Univ, Dept Ind & Syst Engn, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Age replacement policy; block replacement policy; degradation; extreme shock model; m-shock model; multiple s-dependent competing failure processes; delta-shock model; REPLACEMENT POLICIES; SYSTEMS SUBJECT; RANDOM SHOCKS; DEGRADATION; BLOCK; STRENGTH; AGE;
D O I
10.1109/TR.2012.2221016
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present reliability and maintenance models for systems subject to multiple s-dependent competing failure processes with a changing, dependent failure threshold. In our model, two failure processes are considered: soft failure caused by continuous degradation together with additional abrupt degradation due to a shock process, and hard failure caused by the instantaneous stress from the same shock process. These two failure processes are correlated or s-dependent in two respects: 1) the arrival of each shock load affects both failure processes, and 2) the shock process impacts the hard failure threshold level. In previous research, the failure thresholds are fixed constants, which is appropriate for most design and reliability problems. However, the nature of the failure threshold has become a critical issue for certain classes of complex devices. When withstanding shocks, the system is deteriorating, and its resistance to failure is weakening. In this case, it becomes more sensitive to hard failure. In this paper, three cases of dependency between the shock process and the hard failure threshold level are studied. The first case is that the hard failure threshold value changes to a lower level when the first shock is recorded above a critical value, or a generalized extreme shock model. The second case is that the hard failure threshold value decreases to a lower level when the time lag between two sequential shocks is less than a threshold delta, or a generalized delta-shock model. The third case is that the hard failure threshold value reduces to a lower level right after m shocks whose magnitudes are larger than a critical value, or a generalized m-shock model. Based on degradation and random shock modeling, reliability models are developed for these two s-dependent failure processes with a shifting failure threshold. Two preventive maintenance policies are also applied and compared to decide which one is more beneficial. Then a Micro-Electro-Mechanical System example is given to demonstrate the reliability models and maintenance polices.
引用
收藏
页码:932 / 948
页数:17
相关论文
共 50 条
  • [41] Reliability Modeling for Systems Subject to Dependent Competing Failure Processes with Set of Random Shocks Affect Specific Components
    Pang, Yuechan
    Li, Chuanri
    Guo, Henghui
    Wang, Kaishan
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 536 - 542
  • [42] Reliability modeling of dependent competing failure processes based on time-dependent threshold level d and degradation rate changes
    Lyu, Hao
    Ma, Li
    Qu, Hongchen
    Yang, Zaiyou
    Jiang, Yuliang
    Lu, Bing
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (06) : 2295 - 2310
  • [43] Degradation modeling and remaining useful life prediction for dependent competing failure processes
    Yan, Tao
    Lei, Yaguo
    Li, Naipeng
    Wang, Biao
    Wang, Wenting
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212
  • [44] Reliability analysis of dependent competing failure processes with time-varying δ shock model
    Lyu, Hao
    Qu, Hongchen
    Yang, Zaiyou
    Ma, Li
    Lu, Bing
    Pecht, Michael
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 229
  • [45] Study on Chip Reliability Modeling Based on Mutually Dependent Competing Failure of Solder Joints in Different Failure Modes
    Li, Longteng
    Jing, Bo
    Hu, Jiaxing
    Jiao, Xiaoxuan
    Pan, Jinxin
    Sun, Hongda
    IEEE ACCESS, 2020, 8 : 204695 - 204708
  • [46] Reliability Modeling for Linear Consecutive-k-out-of-n :F Systems Subject to Dependent Competing Failure Processes
    Shen, Yongguang
    Guo, Jianbin
    Zeng, Shengkui
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 78 - 82
  • [47] Reliability Model of Competing Failure System with Dependent Degradation
    Yang Z.
    Zhao J.
    Cheng Z.
    Li L.
    Chi K.
    Binggong Xuebao/Acta Armamentarii, 2020, 41 (07): : 1423 - 1433
  • [48] Reliability evaluation for precision degradation failure and dependent competing failure of harmonic dirves
    Zhang, Xian
    Wang, Peng
    Zhang, Changming
    Jiang, Gedong
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (15): : 277 - 287
  • [49] Reliability analysis for dependent competing failure of harmonic drive with strength failure and stiffness degradation failure
    Zhang, Xian
    Jiang, Gedong
    Zhang, Hao
    Yun, Xialun
    Mei, Xuesong
    ENGINEERING COMPUTATIONS, 2021, 38 (10) : 3645 - 3672
  • [50] Reliability modeling and analysis of uncertain competing failure systems
    Gao, Rong
    Li, Xinyang
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197