A Genetic Algorithm and Cell Mapping Hybrid Method for Multi-objective Optimization Problems

被引:0
|
作者
Naranjani, Yousef [1 ]
Sardahi, Yousef [1 ]
Sun, J. Q. [1 ]
机构
[1] Univ Calif, Sch Engn, Merced, CA 95343 USA
来源
2014 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE) | 2014年
关键词
SEARCH; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a hybrid multi-objective optimization (MOO) algorithm consisting of an integration of the genetic algorithm (GA) and the simple cell mapping (SCM) is proposed. The GA converges quickly toward a solution neighborhood, but it takes a considerable amount of time to converge to the Pareto set. The SCM can find the global solution because it sweeps the whole space of interest. However, the computational effort grows exponentially with the dimension of the design space. In the hybrid algorithm, the GA is used initially to find a rough solution for the multi-objective optimization problem (MOP). Then, the SCM method takes over to find the non-dominated solutions in each region returned by the GA. It should be pointed out that one point near or on the Pareto set is enough for the SCM to recover the rest of the solution in the region. For comparison purpose, the hybrid algorithm, the GA and SCM methods are applied to solve some of benchmark problems with the Hausdorff distance, number of function evaluations and CPU time as performance metrics. The results show that the hybrid algorithm outperforms other methods with a modest computational time increase. Although the hybrid algorithm does not guarantee finding the global solution, it has much improved chance as demonstrated by one of the benchmark problems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Hybrid Evolutionary Algorithm and Cell Mapping Method for Multi-Objective Optimization Problems
    Sun, J. Q.
    Schutze, Oliver
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 492 - 500
  • [2] A Modified micro Genetic Algorithm for undertaking Multi-Objective Optimization Problems
    Tan, Choo Jun
    Lim, Chee Peng
    Cheah, Yu-N
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (03) : 483 - 495
  • [3] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Jangir, Pradeep
    Buch, Hitarth
    Mirjalili, Seyedali
    Manoharan, Premkumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 169 - 195
  • [4] An Adaptive Hybrid PSO Multi-Objective Optimization Algorithm for Constrained Optimization Problems
    Hu, Hongzhi
    Tian, Shulin
    Guo, Qing
    Ouyang, Aijia
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [5] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [6] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [7] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [8] A Modification of the Imperialist Competitive Algorithm with Hybrid Methods for Multi-Objective Optimization Problems
    Luo, Jianfu
    Zhou, Jinsheng
    Jiang, Xi
    Lv, Haodong
    SYMMETRY-BASEL, 2022, 14 (01):
  • [9] Exergoeconomic Distillation Sequencing by Multi-objective Optimization through a Hybrid Genetic Algorithm
    Ozcelik, Y.
    Mert, S. O.
    CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY, 2016, 30 (03) : 305 - 315
  • [10] A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
    Yang, Yufei
    Zhang, Changsheng
    BIOMIMETICS, 2023, 8 (02)