Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells

被引:63
|
作者
Qiu, Longbin [1 ]
Ono, Luis K. [1 ]
Jiang, Yan [1 ]
Leyden, Matthew R. [1 ]
Raga, Sonia R. [1 ]
Wang, Shenghao [1 ]
Qi, Yabing [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ OIST, Energy Mat & Surface Sci Unit EMSS, 1919-1 Tancha, Onnason, Okinawa 9040495, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2018年 / 122卷 / 02期
关键词
ANOMALOUS HYSTERESIS; TRANSPORT LAYERS; BLOCKING LAYER; TIO2; DEPOSITION; SURFACE; FILMS;
D O I
10.1021/acs.jpcb.7b03921
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO2, but the device is not stable and degrades rapidly. With an amorphous TiO2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO2. Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH3NH3PbI3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO2 and CH3NH3PbI3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO2 can enhance device stability, strongly suggests that the interface interaction between TiO2 and CH3NH3PbI3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 50 条
  • [1] Organometal halide perovskite solar cells: degradation and stability
    Berhe, Taame Abraha
    Su, Wei-Nien
    Chen, Ching-Hsiang
    Pan, Chun-Jern
    Cheng, Ju-Hsiang
    Chen, Hung-Ming
    Tsai, Meng-Che
    Chen, Liang-Yih
    Dubale, Amare Aregahegn
    Hwang, Bing-Joe
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) : 323 - 356
  • [2] Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells
    Ono, Luis K.
    Qi, Yabing
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (22): : 4764 - 4794
  • [3] Toxicity of organometal halide perovskite solar cells
    Aslihan Babayigit
    Anitha Ethirajan
    Marc Muller
    Bert Conings
    Nature Materials, 2016, 15 : 247 - 251
  • [4] Toxicity of organometal halide perovskite solar cells
    Babayigit, Aslihan
    Ethirajan, Anitha
    Muller, Marc
    Conings, Bert
    NATURE MATERIALS, 2016, 15 (03) : 247 - 251
  • [5] Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells
    Mohd Yusoff, Abd. Rashid bin
    Vasilopoulou, Maria
    Georgiadou, Dimitra G.
    Palilis, Leonidas C.
    Abate, Antonio
    Nazeeruddin, Mohammad Khaja
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) : 2906 - 2953
  • [6] Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability
    Yang, Zhichun
    Babu, Balaraju Hari
    Wu, Shaohang
    Liu, Tianlun
    Fang, Shaoying
    Xiong, Zhenzhong
    Han, Liyuan
    Chen, Wei
    SOLAR RRL, 2020, 4 (02)
  • [7] Additive engineering to improve the efficiency and stability of inverted planar perovskite solar cells
    Gao, Chenglin
    Dong, Hongzhou
    Bao, Xichang
    Zhang, Yongchao
    Saparbaev, Aziz
    Yu, Liyan
    Wen, Shuguang
    Yang, Renqiang
    Dong, Lifeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (30) : 8234 - 8241
  • [8] Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells
    Corsini, Francesca
    Griffini, Gianmarco
    JOURNAL OF PHYSICS-ENERGY, 2020, 2 (03):
  • [9] Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer
    Sun, Yue
    Fang, Xiang
    Ma, Zhijie
    Xu, Linjun
    Lu, Yongting
    Yu, Qiang
    Yuan, Ningyi
    Ding, Jiangning
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (34) : 8682 - 8687
  • [10] Enhanced Efficiency of Halide Perovskite Solar Cells by Solvent Engineering
    Liu, Xibin
    Tao, Jiayou
    Liao, Gaohua
    Zou, Zhijun
    Li, Fen
    Sun, Xiaoxiang
    Li, Chang
    Li, Qiyun
    Qi, Xiang
    Zou, Xinchang
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2020, 15 (02) : 243 - 249