EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS

被引:42
作者
Carstensen, Carsten [1 ,2 ]
Gedicke, Joscha [1 ]
Rim, Donsub [2 ,3 ]
机构
[1] Humboldt Univ, Inst Matemat, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Yonsei Univ, Yonsei Sch Business, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Error estimates; Conforming; Nonconforming; Mixed; Finite element method; ANGLE CONDITION; INTERPOLATION; BOUNDS;
D O I
10.4208/jcm.1108-m3677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 19 条
[1]   The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations [J].
Acosta, G ;
Duránn, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :18-36
[2]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[3]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[4]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[5]  
[Anonymous], 1978, STUDIES MATH ITS APP
[6]   COMPUTABLE FINITE-ELEMENT ERROR-BOUNDS FOR POISSONS-EQUATION [J].
ARBENZ, P .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (04) :475-479
[7]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[8]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[9]  
Bahriawati C., 2005, Comput. Meth. Appl. Math., V5, P333
[10]  
Braess D., 2001, FINITE ELEMENTS