Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces

被引:9
作者
Maciejewski, Andrzej J. [1 ]
Szuminski, Wojciech [2 ]
Przybylska, Maria [2 ]
机构
[1] Univ Zielona Gora, Janusz Gil Inst Astron, Licealna 9, PL-65407 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Phys, Licealna 9, PL-65407 Zielona Gora, Poland
关键词
Integrability obstructions; Liouville integrability; Morales-Ramis theory; Differential Galois theory; Constant curvature spaces; SPHERE;
D O I
10.1016/j.physleta.2016.12.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the necessary conditions for the integrability of a certain family of Hamiltonian systems defined in the constant curvature two-dimensional spaces. Proposed form of potential can be considered as a counterpart of a homogeneous potential in flat spaces. Thanks to this property Hamilton equations admit, in a general case, a particular solution. Using this solution we derive necessary integrability conditions investigating differential Galois group of variational equations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 732
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1969, Funkcial Ekvac
[2]   A new integrable anisotropic oscillator on the two-dimensional sphere and the hyperbolic plane [J].
Ballesteros, Angel ;
Blasco, Alfonso ;
Herranz, Francisco J. ;
Musso, Fabio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (34)
[3]   The anisotropic oscillator on the 2D sphere and the hyperbolic plane [J].
Ballesteros, Angel ;
Herranz, Francisco J. ;
Musso, Fabio .
NONLINEARITY, 2013, 26 (04) :971-990
[4]   Integrability of Hamiltonian systems with homogeneous potentials of degree zero [J].
Casale, Guy ;
Duval, Guillaume ;
Maciejewski, Andrzej J. ;
Przybylska, Maria .
PHYSICS LETTERS A, 2010, 374 (03) :448-452
[5]   JORDAN OBSTRUCTION TO THE INTEGRABILITY OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS [J].
Duval, Guillaume ;
Maciejewski, Andrzej J. .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) :2839-2890
[6]   Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry [J].
Herranz, FJ ;
Ortega, R ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24) :4525-4551
[7]   Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential [J].
Maciejewski, AJ ;
Przybylska, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
[8]   Non-integrability of Gross-Neveu systems [J].
Maciejewski, AJ ;
Przybylska, M ;
Stachowiak, T .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (3-4) :249-267
[9]   Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces [J].
Maciejewski, Andrzej J. ;
Przybylska, Maria ;
Yoshida, Haruo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[10]  
Morales-Ruiz JJ., 2001, METHODS APPL ANAL, V8, P113, DOI DOI 10.4310/MAA.2001.V8.N1.A5