Nanostructured superhard carbon phase obtained under high pressure with shear deformation from single-wall nanotubes HiPco

被引:16
|
作者
Blank, V. D.
Denisov, V. N.
Kirichenko, A. N.
Lvova, N. A.
Martyushov, S. Y.
Mavrin, B. N. [1 ]
Popova, D. M.
Popov, M. Yu.
Tat'yanin, E. V.
Zakhidov, A. A.
机构
[1] Russian Acad Sci, Inst Spect, Troitsk, Moscow, Russia
[2] Technol Inst Superhard & Novel Carbon Mat Troitsk, Troitsk, Moscow, Russia
[3] Univ Texas, NanoTech Inst, Richardson, TX USA
[4] Univ Texas, Dept Phys, Richardson, TX USA
关键词
nanotube; high pressure; Raman; hardness;
D O I
10.1016/j.physb.2006.01.519
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Raman spectra of single-wall nanotubes under high pressure combined with shear deformation are investigated in situ in a diamond cell. Shear deformation applied under 3 5 GPa led to pressure multiplication up to 60 GPa, and increased the intensity of Raman bands more than ten times without essential change of G-mode position while causing its essential broadening. The G-mode remained broad after pressure unloading and shifted to 1534 cm(-1). The hardness of the superhard material was 58 +/- 6 GPa, comparable to the hardness of carbo-boro-nitride. A broad band appeared in the photoluminescence spectrum with a maximum at about 2 eV, which allowed to assume a high content of sp(3)-bonds in the sample. The large dispersion of the G-mode almost vanished after pressure unloading. However, a noticeable dispersion of the D-mode was found, which is a sign of certain ordering in the superhard phase. TEM study of the superhard phase detected clusters with graphene sheets with a size about 1 nm. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 64
页数:7
相关论文
共 50 条
  • [31] Pressure effects on surfactant solubilized single-wall carbon nanotubes
    Freire, P. T. C.
    Lemos, V.
    Lima, J. A., Jr.
    Saraiva, G. D.
    Pizani, P. S.
    Nascimento, R. O.
    Ricardo, N. M. P. S.
    Mendes, J.
    Souza, A. G.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (01): : 105 - 109
  • [32] Low pressure CVD growth of single-wall carbon nanotubes
    Shiokawa, T. (shiokawa@riken.jp), IEEE Electron Device Society; Japan Society of Applied Physics (IEEE Computer Society):
  • [33] Resistance vs. pressure of single-wall carbon nanotubes
    Bozhko, AD
    Sklovsky, DE
    Nalimova, VA
    Rinzler, AG
    Smalley, RE
    Fischer, JE
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (01): : 75 - 77
  • [34] Deformation of isolated single-wall carbon nanotubes in electrospun polymer nanofibres
    Kannan, Prabhakaran
    Eichhorn, Stephen J.
    Young, Robert J.
    NANOTECHNOLOGY, 2007, 18 (23)
  • [35] Dynamics of the radial deformation recovery process of single-wall carbon nanotubes
    Shen, Yanting
    Zerulla, Dominic
    CARBON, 2018, 132 : 466 - 476
  • [36] Numerical study of equilibrium shapes and deformation of single-wall carbon nanotubes
    Treister, Y.
    Pozrikidis, C.
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 41 (03) : 383 - 408
  • [37] Phase diagram of single-wall carbon nanotube crystals under hydrostatic pressure
    Sluiter, MHF
    Kawazoe, Y
    PHYSICAL REVIEW B, 2004, 69 (22) : 224111 - 1
  • [38] Single-wall carbon nanotubes used as stationary phase in HPLC
    Chang, Y. X.
    Zhou, L. L.
    Li, G. X.
    Li, L.
    Yuan, L. M.
    JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES, 2007, 30 (19) : 2953 - 2958
  • [39] Stability of single-wall carbon nanotubes under hydrothermal conditions
    Swamy, SS
    Calderon-Moreno, JM
    Yoshimura, M
    JOURNAL OF MATERIALS RESEARCH, 2002, 17 (04) : 734 - 737
  • [40] Stability of single-wall carbon nanotubes under hydrothermal conditions
    S. Srikanta Swamy
    Jose Maria Calderon-Moreno
    Masahiro Yoshimura
    Journal of Materials Research, 2002, 17 : 734 - 737