PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

被引:0
|
作者
Cuevas-Maraver, Jesus [1 ,2 ]
Khare, Avinash [3 ]
Kevrekidis, Panayotis G. [4 ]
Xu, Haitao [4 ]
Saxena, Avadh [5 ,6 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Nonlinear Phys Grp, Seville 41011, Spain
[2] Univ Seville, Inst Matemat, E-41012 Seville, Spain
[3] IISER, Pune 411008, Maharashtra, India
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Oscillators; PT-symmetry; Stability; Periodic orbits; STABILITY; GAIN;
D O I
10.1007/s10773-014-2429-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we explore the case of a general -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrodinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations.
引用
收藏
页码:3960 / 3985
页数:26
相关论文
共 50 条
  • [21] Enhanced Sensitivity in PT-Symmetric Coupled Resonators
    Hodaei, H.
    Hassan, A. U.
    Garcia-Gracia, H.
    Hayenga, W. E.
    Christodoulides, D. N.
    Khajavikhan, M.
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XIX, 2017, 10090
  • [22] Strongly Coupled PT-Symmetric Models in Holography
    Arean, Daniel
    Garcia-Farina, David
    Landsteiner, Karl
    ENTROPY, 2025, 27 (01)
  • [23] Nonlinear localized modes in PT-symmetric optical media with competing gain and loss
    Midya, Bikashkali
    Roychoudhury, Rajkumar
    ANNALS OF PHYSICS, 2014, 341 : 12 - 20
  • [24] Breathers in PT-symmetric optical couplers
    Barashenkov, I. V.
    Suchkov, Sergey V.
    Sukhorukov, Andrey A.
    Dmitriev, Sergey V.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [25] Switching in the PT-symmetric nonlinear periodic structures
    Shestakov, Pavel Yu
    Marchenko, Vladimir F.
    Komissarova, Maria, V
    NONLINEAR OPTICS AND APPLICATIONS XI, 2019, 11026
  • [26] Optical solitons in PT-symmetric nonlinear couplers with gain and loss
    Alexeeva, N. V.
    Barashenkov, I. V.
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [27] Nonlinear Modes in Finite-Dimensional PT-Symmetric Systems
    Zezyulin, D. A.
    Konotop, V. V.
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [28] Dynamics of generalized PT-symmetric dimers with time-periodic gain-loss
    Battelli, F.
    Diblik, J.
    Feckan, M.
    Pickton, J.
    Pospisil, M.
    Susanto, H.
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 353 - 371
  • [29] PT-symmetric model of immune response
    Bender, Carl M.
    Ghatak, Ananya
    Gianfreda, Mariagiovanna
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (03)
  • [30] Analytic solutions for generalized PT-symmetric Rabi models
    董元浩
    张文静
    刘静
    谢小涛
    Chinese Physics B, 2019, (11) : 165 - 171