PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

被引:0
|
作者
Cuevas-Maraver, Jesus [1 ,2 ]
Khare, Avinash [3 ]
Kevrekidis, Panayotis G. [4 ]
Xu, Haitao [4 ]
Saxena, Avadh [5 ,6 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Nonlinear Phys Grp, Seville 41011, Spain
[2] Univ Seville, Inst Matemat, E-41012 Seville, Spain
[3] IISER, Pune 411008, Maharashtra, India
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Oscillators; PT-symmetry; Stability; Periodic orbits; STABILITY; GAIN;
D O I
10.1007/s10773-014-2429-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we explore the case of a general -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrodinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations.
引用
收藏
页码:3960 / 3985
页数:26
相关论文
共 50 条
  • [11] Localized modes in a nonlinear medium with a PT-symmetric dipole
    Mayteevarunyoo, Thawatchai
    Reoksabutr, Athikom
    Malomed, Boris A.
    2014 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2014,
  • [12] 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}\mathcal {T}$\end{document}-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators
    Jesús Cuevas–Maraver
    Avinash Khare
    Panayotis G. Kevrekidis
    Haitao Xu
    Avadh Saxena
    International Journal of Theoretical Physics, 2015, 54 (11) : 3960 - 3985
  • [13] Blow-up regimes in the PT-symmetric coupler and the actively coupled dimer
    Barashenkov, I. V.
    Jackson, G. S.
    Flach, S.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [14] VECTOR SOLITON SOLUTIONS IN PT-SYMMETRIC COUPLED WAVEGUIDES AND THEIR RELEVANT PROPERTIES
    Liu, Bin
    Li, Lu
    Mihalache, Dumitru
    ROMANIAN REPORTS IN PHYSICS, 2015, 67 (03) : 802 - 818
  • [15] PT-symmetric sine-Gordon breathers
    Lu, Nan
    Kevrekidis, Panayotis G.
    Cuevas-Maraver, Jesus
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (45)
  • [16] Solitary Waves of a PT-Symmetric Nonlinear Dirac Equation
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Saxena, Avadh
    Cooper, Fred
    Khare, Avinash
    Comech, Andrew
    Bender, Carl M.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (05) : 67 - 75
  • [17] Nonlinear switching and solitons in PT-symmetric photonic systems
    Suchkov, Sergey V.
    Sukhorukov, Andrey A.
    Huang, Jiahao
    Dmitriev, Sergey V.
    Lee, Chaohong
    Kivshar, Yuri S.
    LASER & PHOTONICS REVIEWS, 2016, 10 (02) : 177 - 213
  • [18] The nonlinear Schrodinger equation with generalized nonlinearities and PT-symmetric potentials: Stable solitons, interactions, and excitations
    Yan, Zhenya
    Chen, Yong
    CHAOS, 2017, 27 (07)
  • [19] Self-defocusing nonlinear coupled system with PT-symmetric super-Gaussian potential
    Thasneem, A. R.
    Subha, P. A.
    CHAOS, 2023, 33 (09)
  • [20] Solitons in a Hamiltonian PT-symmetric coupler
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (01)