PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

被引:0
|
作者
Cuevas-Maraver, Jesus [1 ,2 ]
Khare, Avinash [3 ]
Kevrekidis, Panayotis G. [4 ]
Xu, Haitao [4 ]
Saxena, Avadh [5 ,6 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, Nonlinear Phys Grp, Seville 41011, Spain
[2] Univ Seville, Inst Matemat, E-41012 Seville, Spain
[3] IISER, Pune 411008, Maharashtra, India
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Oscillators; PT-symmetry; Stability; Periodic orbits; STABILITY; GAIN;
D O I
10.1007/s10773-014-2429-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we explore the case of a general -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrodinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations.
引用
收藏
页码:3960 / 3985
页数:26
相关论文
共 50 条
  • [1] PT-symmetric dimer of coupled nonlinear oscillators
    Cuevas, Jesus
    Kevrekidis, Panayotis G.
    Saxena, Avadh
    Khare, Avinash
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [2] PT-symmetric dimer of coupled nonlinear oscillators
    Khare, Avinash
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (05): : 915 - 928
  • [3] An exactly solvable PT-symmetric dimer from a Hamiltonian system of nonlinear oscillators with gain and loss
    Barashenkov, I. V.
    Gianfreda, Mariagiovanna
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (28)
  • [4] Algebraic Treatment of PT-Symmetric Coupled Oscillators
    Fernandez, Francisco M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3871 - 3876
  • [5] Hamiltonian formulation of the standard PT-symmetric nonlinear Schrodinger dimer
    Barashenkov, I. V.
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [6] Nonlinear modes in a generalized PT-symmetric discrete nonlinear Schrodinger equation
    Pelinovsky, D. E.
    Zezyulin, D. A.
    Konotop, V. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (08)
  • [7] Nonlinear PT-symmetric plaquettes
    Li, Kai
    Kevrekidis, P. G.
    Malomed, Boris A.
    Guenther, Uwe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [8] Spectral and transport properties of the PT-symmetric dimer model
    Vazquez-Candanedo, O.
    Izrailev, F. M.
    Christodoulides, D. N.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 72 : 7 - 16
  • [9] Nonlinear Stationary States in PT-Symmetric Lattices
    Kevrekidis, Panayotis G.
    Pelinovsky, Dmitry E.
    Tyugin, Dmitry Y.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (03): : 1210 - 1236
  • [10] Revisiting the Optical PT-Symmetric Dimer
    Huerta Morales, Jose Delfino
    Guerrero, Julio
    Lopez-Aguayo, Servando
    Manuel Rodriguez-Lara, Blas
    SYMMETRY-BASEL, 2016, 8 (09):