Missing Value Prediction for Qualitative Information Systems

被引:1
|
作者
Medhat, T. [1 ]
Elsayed, Manal [2 ]
机构
[1] Kafrelsheikh Univ, Fac Engn, Elect Engn Dept, Kafrelsheikh, Egypt
[2] Kafrelsheikh Univ, Fac Engn, Phys & Engn Math Dept, Kafrelsheikh, Egypt
关键词
Information System; Binary System; Reduction; Missing Values; Distance Function; Most Common Values;
D O I
10.2298/FIL2001175M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most information systems usually have some missing values due to unavailable data. Missing values have a negative impact on the quality of classification rules generated by data mining systems. They make it difficult to obtain useful information from the data set. Solving the missing data problem is a high priority in the fields of knowledge discovery and data mining. The main goal of this paper is to suggest a method for converting a qualitative information system into a binary system, by using a distance function between condition attributes, we can detect the missing values for decision attribute according to the smallest distance. Most common values can be used to solve the problem of repeated small distance for some cases. This method will be discussed in detail through a case study.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [31] The Feature Selection Effect on Missing Value Imputation of Medical Datasets
    Liu, Chia-Hui
    Tsai, Chih-Fong
    Sue, Kuen-Liang
    Huang, Min-Wei
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [32] Comparison of missing value imputation methods for crop yield data
    Lokupitiya, Ravindra S.
    Lokupitiya, Erandathie
    Paustian, Keith
    ENVIRONMETRICS, 2006, 17 (04) : 339 - 349
  • [33] Missing value imputation using unsupervised machine learning techniques
    Raja, P. S.
    Thangavel, K.
    SOFT COMPUTING, 2020, 24 (06) : 4361 - 4392
  • [34] Missing value imputation using unsupervised machine learning techniques
    P. S. Raja
    K. Thangavel
    Soft Computing, 2020, 24 : 4361 - 4392
  • [35] A missing value approach to social network data: “Dislike” or “Nothing”?
    Paolo Mariani
    Andrea Marletta
    Mauro Mussini
    Mariangela Zenga
    Erika Grammatica
    Computational Management Science, 2020, 17 : 569 - 583
  • [36] A Comparative Study of Missing Value Imputation Methods for Education Data
    Keerin, Phimmarin
    29TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2021), VOL II, 2021, : 109 - 117
  • [37] A missing value approach to social network data: "Dislike" or "Nothing"?
    Mariani, Paolo
    Marletta, Andrea
    Mussini, Mauro
    Zenga, Mariangela
    Grammatica, Erika
    COMPUTATIONAL MANAGEMENT SCIENCE, 2020, 17 (04) : 569 - 583
  • [38] Toward the Imputation and Prediction of Condition Monitoring Data with Missing Values
    Zhang, Di
    Li, Canbing
    Zhu, Jizhong
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 996 - 1002
  • [39] Growth Scale Prediction of Big Data for Information Systems Based on a Deep Learning SAEP Method
    Liu, Wenjuan
    Zeng, Guosun
    Hu, Kekun
    IEEE ACCESS, 2020, 8 : 62883 - 62894
  • [40] XGBoost in handling missing values for life insurance risk prediction
    Deandra Aulia Rusdah
    Hendri Murfi
    SN Applied Sciences, 2020, 2