Highly Efficient Fe-N-C Electrocatalyst for Oxygen Reduction Derived from Core-Shell-Structured Fe(OH)3@Zeolitic Imidazolate Framework

被引:35
作者
Huang, Jia-Wei [1 ]
Cheng, Qing-Qing [2 ]
Huang, Yi-Chen [1 ]
Yao, Hong-Chang [3 ]
Zhu, Hai-Bin [1 ]
Yang, Hui [2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[3] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe-N-C electrocatalysts; iron oxide; zeolitic imidazolate framework; oxygen reduction reaction; H-2-O-2 proton exchange membrane fuel cell; DOPED POROUS CARBON; CATALYTIC SITES; METAL-CATALYSTS; PARTICLE-SIZE; FUEL-CELLS; IRON; ACTIVATION; NANOFRAMES; EVOLUTION; ZIF-8;
D O I
10.1021/acsaem.9b00023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-N-C electrocatalysts represent one of the most promising oxygen reduction catalysts to replace the expensive platinum (Pt)-based catalysts in fuel cells. Herein, we report a highly efficient zeolitic imidazolate framework (ZIF)-derived Fe-N-C electrocatalyst for the oxygen reduction reaction (ORR) in both alkaline and acidic solutions, which involves the formation of a core-shell-structured Fe(OH)(3)@ZIF-8. The encapsulated Fe(OH)(3) in ZIF-8 gradually evolves into iron oxide with the increasing temperature during the carbonization, which plays several roles including creating Fe-N-x active sites, retaining morphology as a rigid template as well as tuning the carbon microstructure. The best-performing C-Fe(OH)(3)@ZIF-1000 catalyst features a hollow polyhedron (interior cavity: ca. 48 nm) with a thin carbon shell (ca. 5 nm), exhibiting a high Brunauer-Emmet-Teller (BET) surface area of 1021 m(2) g(-1). In alkaline solution, the ORR activity of C-Fe(OH)(3)@ZIF-1000 surpasses the benchmark Pt/C catalyst, with the onset potential (E-onset) of 0.99 V (vs RHE) and the half-wave potential (E-1/2) of 0.88 V (vs RHE). In acidic solution, the difference in E-1/2 between C-Fe(OH)(3)@ZIF-1000 and Pt/C is 60 mV (0.80 vs 0.86 V), ranking it among the best Fe-N-C electrocatalysts in acidic media. The H2O2 proton exchange membrane fuel cell (PEMFC) with C-Fe(OH)(3)@ ZIF-1000 as the cathode catalyst delivers a maximum power density of 411 mW cm(2) at 0.35 V.
引用
收藏
页码:3194 / 3203
页数:19
相关论文
共 55 条
  • [1] A class of non-precious metal composite catalysts for fuel cells
    Bashyam, Rajesh
    Zelenay, Piotr
    [J]. NATURE, 2006, 443 (7107) : 63 - 66
  • [2] Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions
    Chen, Pengzuo
    Zhou, Tianpei
    Xing, Lili
    Xu, Kun
    Tong, Yun
    Xie, Hui
    Zhang, Lidong
    Yan, Wensheng
    Chu, Wangsheng
    Wu, Changzheng
    Xie, Yi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) : 610 - 614
  • [3] Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Chen, Yuanjun
    Ji, Shufang
    Wang, Yanggang
    Dong, Juncai
    Chen, Wenxing
    Li, Zhi
    Shen, Rongan
    Zheng, Lirong
    Zhuang, Zhongbin
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) : 6937 - 6941
  • [4] A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells
    Chenitz, Regis
    Kramm, Ulrike I.
    Lefevre, Michel
    Glibin, Vassili
    Zhang, Gaixia
    Sun, Shuhui
    Dodelet, Jean-Pol
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) : 365 - 382
  • [5] The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium
    Choi, Chang Hyuck
    Lim, Hyung-Kyu
    Chung, Min Wook
    Chon, Gajeon
    Sahraie, Nastaran Ranjbar
    Altin, Abdulrahman
    Sougrati, Moulay-Tahar
    Stievano, Lorenzo
    Oh, Hyun Seok
    Park, Eun Soo
    Luo, Fang
    Strasser, Peter
    Drazic, Goran
    Mayrhofer, Karl J. J.
    Kim, Hyungjun
    Jaouen, Frederic
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) : 3176 - 3182
  • [6] Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?
    Choi, Ja-Yeon
    Yang, Lijun
    Kishimoto, Takeaki
    Fu, Xiaogang
    Ye, Siyu
    Chen, Zhongwei
    Banham, Dustin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (01) : 296 - 305
  • [7] Pyridinic-Nitrogen-Dominated Graphene Aerogels with Fe-N-C Coordination for Highly Efficient Oxygen Reduction Reaction
    Cui, Xiaoyang
    Yang, Shubin
    Yan, Xingxu
    Leng, Jiugou
    Shuang, Shuang
    Ajayan, Pulickel M.
    Zhang, Zhengjun
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (31) : 5708 - 5717
  • [8] Electrocatalyst approaches and challenges for automotive fuel cells
    Debe, Mark K.
    [J]. NATURE, 2012, 486 (7401) : 43 - 51
  • [9] Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts
    Deng, Yijie
    Dong, Yuanyuan
    Wang, Guanghua
    Sun, Kailing
    Shi, Xiudong
    Zheng, Long
    Li, Xiuhua
    Liao, Shijun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) : 9699 - 9709
  • [10] Garland N.L., 2007, ECS Trans, V11, P923, DOI [DOI 10.1149/1.2781004, 10.1149/1.2781004]