Combining geodesic interpolating splines and affine transformations

被引:8
|
作者
Younes, L [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21208 USA
[2] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21208 USA
关键词
affine registration; geodesic splines; image registration; landmark matching; nonrigid registration;
D O I
10.1109/TIP.2005.864163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geodesic spline interpolation is a simple and efficient approach for landmark matching by nonambiguous mappings (diffeomorphisms), combining classic spline interpolation and flows of diffeomorphisms. Here, we extend the method to incorporate the estimation of a affine transformation, yielding a consistent and numerically stable algorithm. A theoretical justification is provided by studying the existence of the global minimum of the energy.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [1] Geodesic interpolating splines
    Camion, V
    Younes, L
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 513 - 527
  • [2] Texture based mammogram registration using geodesic interpolating splines
    Petroudi, S
    Brady, M
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 2, PROCEEDINGS, 2004, 3217 : 1062 - 1063
  • [3] SPECIAL GROUPS OF ALMOST GEODESIC TRANSFORMATIONS OF AFFINE SPACE BINDINGS
    YABLONSKAYA, NV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, (01): : 78 - 80
  • [4] ON MIXED INTERPOLATING SPLINES
    HUANG, DR
    SHA, Z
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (02): : 233 - 240
  • [5] Comonotone adaptive interpolating splines
    Oja, P
    BIT, 2002, 42 (04): : 842 - 855
  • [6] Comonotone Adaptive Interpolating Splines
    Peeter Oja
    BIT Numerical Mathematics, 2002, 42 : 842 - 855
  • [7] Convergence of Quartic Interpolating Splines
    Yu. S. Volkov
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 196 - 202
  • [8] Computing the geodesic interpolating spline
    Mills, Anna
    Shardlow, Tony
    Marsland, Stephen
    BIOMEDICAL IMAGE REGISTRATION, PROCEEDINGS, 2006, 4057 : 169 - 177
  • [9] Approximation by interpolating variational splines
    Kouibia, A.
    Pasadas, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 342 - 349
  • [10] ON INTERPOLATING MULTIVARIATE RATIONAL SPLINES
    WANG, RH
    TAN, JQ
    APPLIED NUMERICAL MATHEMATICS, 1993, 12 (04) : 357 - 372