TransMatting: Enhancing Transparent Objects Matting with Transformers

被引:16
作者
Cai, Huanqia [1 ,2 ]
Xue, Fanglei [1 ,2 ]
Xu, Lele [1 ,2 ]
Guo, Lili [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XXIX | 2022年 / 13689卷
关键词
Image matting; Vision Transformer; Deep learning;
D O I
10.1007/978-3-031-19818-2_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image matting refers to predicting the alpha values of unknown foreground areas from natural images. Prior methods have focused on propagating alpha values from known to unknown regions. However, not all natural images have a specifically known foreground. Images of transparent objects, like glass, smoke, web, etc., have less or no known foreground. In this paper, we propose a Transformer-based network, TransMatting, to model transparent objects with a big receptive field. Specifically, we redesign the trimap as three learnable tri-tokens for introducing advanced semantic features into the self-attention mechanism. A small convolutional network is proposed to utilize the global feature and non-background mask to guide the multi-scale feature propagation from encoder to decoder for maintaining the contexture of transparent objects. In addition, we create a high-resolution matting dataset of transparent objects with small known foreground areas. Experiments on several matting benchmarks demonstrate the superiority of our proposed method over the current state-of-the-art methods.
引用
收藏
页码:253 / 269
页数:17
相关论文
共 53 条
[1]  
Aksoy Y., 2017, ARXIV
[2]  
[Anonymous], 2019, P IEEECVF INT C COMP
[3]  
[Anonymous], 2010, International journal of computer vision, DOI DOI 10.1007/s11263-009-0275-4
[4]  
Berman Arie, 2000, US Patent, Patent No. 6134346
[5]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[6]   KNN Matting [J].
Chen, Qifeng ;
Li, Dingzeyu ;
Tang, Chi-Keung .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (09) :2175-2188
[7]   Semantic Human Matting [J].
Chen, Quan ;
Ge, Tiezheng ;
Xu, Yanyu ;
Zhang, Zhiqiang ;
Yang, Xinxin ;
Gai, Kun .
PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, :618-626
[8]  
Chuang YY, 2001, PROC CVPR IEEE, P264
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]