Modeling Severe Fever with Thrombocytopenia Syndrome Virus Infection in Golden Syrian Hamsters: Importance of STAT2 in Preventing Disease and Effective Treatment with Favipiravir

被引:69
作者
Gowen, Brian B. [1 ]
Westover, Jonna B. [1 ]
Miao, Jinxin [1 ,2 ]
Van Wettere, Arnaud J. [1 ,3 ]
Rigas, Johanna D. [1 ,3 ]
Hickerson, Brady T. [1 ]
Jung, Kie-Hoon [1 ]
Li, Rong [1 ]
Conrad, Bettina L. [3 ]
Nielson, Skot [1 ]
Furuta, Yousuke [4 ]
Wang, Zhongde [1 ]
机构
[1] Utah State Univ, Dept Anim Dairy & Vet Sci, Logan, UT 84322 USA
[2] Zhengzhou Univ, Sch Basic Med Sci, Dept Pathol, Zhengzhou, Peoples R China
[3] Utah Vet Diagnost Lab, Logan, UT USA
[4] Toyama Chem Co Ltd, Res Labs, Toyama, Japan
关键词
antiviral; favipiravir; phlebovirus; STAT2; animal model; severe fever with thrombocytopenia syndrome virus; PATHOGENESIS; HIJACKING; PROTECTS; MICE;
D O I
10.1128/JVI.01942-16
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease endemic in parts of Asia. The etiologic agent, SFTS virus (SFTSV; family Bunyaviridae, genus Phlebovirus) has caused significant morbidity and mortality in China, South Korea, and Japan, with key features of disease being intense fever, thrombocytopenia, and leukopenia. Case fatality rates are estimated to be in the 30% range, and no antivirals or vaccines are approved for use for treatment and prevention of SFTS. There is evidence that in human cells, SFTSV sequesters STAT proteins in replication complexes, thereby inhibiting type I interferon signaling. Here, we demonstrate that hamsters devoid of functional STAT2 are highly susceptible to as few as 10 PFU of SFTSV, with animals generally succumbing within 5 to 6 days after subcutaneous challenge. The disease included marked thrombocytopenia and inflammatory disease characteristic of the condition in humans. Infectious virus titers were present in the blood and most tissues 3 days after virus challenge, and severe inflammatory lesions were found in the spleen and liver samples of SFTSV-infected hamsters. We also show that SFTSV infection in STAT2 knockout (KO) hamsters is responsive to favipiravir treatment, which protected all animals from lethal disease and reduced serum and tissue viral loads by 3 to 6 orders of magnitude. Taken together, our results provide additional insights into the pathogenesis of SFTSV infection and support the use of the newly described STAT2 KO hamster model for evaluation of promising antiviral therapies. IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral disease for which there are currently no therapeutic options or available vaccines. The causative agent, SFTS virus (SFTSV), is present in China, South Korea, and Japan, and infections requiring medical attention result in death in as many as 30% of the cases. Here, we describe a novel model of SFTS in hamsters genetically engineered to be deficient in a protein that helps protect humans and animals against viral infections. These hamsters were found to be susceptible to SFTSV and share disease features associated with the disease in humans. Importantly, we also show that SFTSV infection in hamsters can be effectively treated with a broad-spectrum antiviral drug approved for use in Japan. Our findings suggest that the new SFTS model will be an excellent resource to better understand SFTSV infection and disease as well as a valuable tool for evaluating promising antiviral drugs.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Platelets and infection - an emerging role of platelets in viral infection [J].
Assinger, Alice .
FRONTIERS IN IMMUNOLOGY, 2014, 5
[2]   Pathogenesis of viral hemorrhagic fever [J].
Bray, M .
CURRENT OPINION IN IMMUNOLOGY, 2005, 17 (04) :399-403
[3]   Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever [J].
Caroline, Amy L. ;
Powell, Diana S. ;
Bethel, Laura M. ;
Oury, Tim D. ;
Reed, Douglas S. ;
Hartman, Amy L. .
PLOS NEGLECTED TROPICAL DISEASES, 2014, 8 (04)
[4]  
Duncan J.R., 2011, Veterinary laboratory medicine: Clinical Pathology, V5
[5]   Efficient Gene Targeting in Golden Syrian Hamsters by the CRISPR/Cas9 System [J].
Fan, Zhiqiang ;
Li, Wei ;
Lee, Sang R. ;
Meng, Qinggang ;
Shi, Bi ;
Bunch, Thomas D. ;
White, Kenneth L. ;
Kong, Il-Keun ;
Wang, Zhongde .
PLOS ONE, 2014, 9 (10)
[6]   Post-exposure Vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge [J].
Gowen, Brian B. ;
Bailey, Kevin W. ;
Scharton, Dionna ;
Vest, Zachery ;
Westover, Jonna B. ;
Skirpstunas, Ramona ;
Ikegami, Tetsuro .
ANTIVIRAL RESEARCH, 2013, 98 (02) :135-143
[7]   Efficacy of favipiravir (T-705) and T-1106 pyrazine derivatives in phlebovirus disease models [J].
Gowen, Brian B. ;
Wong, Min-Hui ;
Jung, Kie-Hoon ;
Smee, Donald F. ;
Morrey, John D. ;
Furuta, Yousuke .
ANTIVIRAL RESEARCH, 2010, 86 (02) :121-127
[8]   The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer [J].
Guthrie, Graeme J. K. ;
Charles, Kellie A. ;
Roxburgh, Campbell S. D. ;
Horgan, Paul G. ;
McMillan, Donald C. ;
Clarke, Stephen J. .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2013, 88 (01) :218-230
[9]   RNA Encapsidation and Packaging in the Phleboviruses [J].
Hornak, Katherine E. ;
Lanchy, Jean-Marc ;
Lodmell, J. Stephen .
VIRUSES-BASEL, 2016, 8 (07)
[10]   Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model [J].
Jin, Cong ;
Liang, Mifang ;
Ning, Junyu ;
Gu, Wen ;
Jiang, Hong ;
Wu, Wei ;
Zhang, Fushun ;
Li, Chuan ;
Zhang, Quanfu ;
Zhu, Hua ;
Chen, Ting ;
Han, Ying ;
Zhang, Weilun ;
Zhang, Shuo ;
Wang, Qin ;
Sun, Lina ;
Liu, Qinzhi ;
Li, Jiandong ;
Wang, Tao ;
Wei, Qiang ;
Wang, Shiwen ;
Deng, Ying ;
Qin, Chuan ;
Li, Dexin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (25) :10053-10058