On Two Multistable Extensions of Stable L,vy Motion and Their Semi-martingale Representations

被引:8
作者
Le Guevel, Ronan [1 ]
Vehel, Jacques Levy [2 ,3 ]
Liu, Lining [2 ,3 ]
机构
[1] Univ Rennes 2, Equipe Stat Irmar, UMR CNRS 6625, F-35043 Rennes, France
[2] Ecole Cent Paris, Inria, Regular Team, F-92295 Chatenay Malabry, France
[3] Ecole Cent Paris, MAS Lab, F-92295 Chatenay Malabry, France
关键词
Levy motion; Multistable process; Semi-martingale; LOCAL-STRUCTURE; BEHAVIOR;
D O I
10.1007/s10959-013-0528-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two versions of multistable L,vy motion. Such processes are extensions of classical L,vy motion where the stability index is allowed to vary in time, a useful property for modeling non-increment stationary phenomena. We show that the two multistable L,vy motions have distinct properties: in particular, one is a pure jump Markov process, while the other one satisfies neither of these properties. We prove that both are semi-martingales and provide semi-martingale decompositions.
引用
收藏
页码:1125 / 1144
页数:20
相关论文
共 20 条
[1]   Sharp estimates on the tail behavior of a multistable distribution [J].
Ayache, Antoine .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (03) :680-688
[2]  
BICHTELER K., 2002, STOCHASTIC INTEGRATI
[3]  
Bierme H., MODULUS CONTINUITY S
[4]   Multifractional, Multistable, and Other Processes with Prescribed Local Form [J].
Falconer, K. J. ;
Vehel, J. Levy .
JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) :375-401
[5]   MULTISTABLE PROCESSES AND LOCALIZABILITY [J].
Falconer, Kenneth ;
Liu, Lining .
STOCHASTIC MODELS, 2012, 28 (03) :503-526
[6]   LOCALIZABLE MOVING AVERAGE SYMMETRIC STABLE AND MULTISTABLE PROCESSES [J].
Falconer, Kenneth J. ;
Le Guevel, Ronan ;
Vehel, Jacques Levy .
STOCHASTIC MODELS, 2009, 25 (04) :648-672
[7]   The local structure of random processes [J].
Falconer, KJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :657-672
[8]   Tangent fields and the local structure of random fields [J].
Falconer, KJ .
JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (03) :731-750
[9]  
Kingman J. F. C., 1993, ser. Oxford Studies in Probability, V3
[10]  
Le Courtois O., PREPRINT