A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing

被引:7
作者
Bouza, Jose J. [1 ]
Yang, Chun-Hao [1 ]
Vaillancourt, David [2 ]
Vemuri, Baba C. [1 ]
机构
[1] Univ Florida, CISE, Gainesville, FL 32611 USA
[2] Univ Florida, Appl Physiol & Kinesiol, Gainesville, FL 32611 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021 | 2021年 / 12729卷
关键词
Riemannian manifolds; Volterra series; Convolutional neural network; Diffusion MRI; fODF reconstruction; Geometric deep learning; FRAMEWORK;
D O I
10.1007/978-3-030-78191-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel generalization of the Volterra Series, which can be viewed as a higher-order convolution, to manifold-valued functions. A special case of the manifold-valued Volterra Series (MVVS) gives us a natural extension of the ordinary convolution to manifold-valued functions that we call, the manifold-valued convolution (MVC). We prove that these generalizations preserve the equivariance properties of the Euclidean Volterra Series and the traditional convolution operator. We present novel deep network architectures using the MVVS and the MVC operations which are then validated via two experiments. These include, (i) movement disorder classification from diffusion magnetic resonance images (dMRI), and (ii) fiber orientation distribution function (fODF) reconstruction from compressed sensed dMRIs. In both the experiments, MVVS and MVC networks outperform the state-of-the-art.
引用
收藏
页码:304 / 317
页数:14
相关论文
共 31 条
[11]  
Chami I, 2019, ADV NEUR IN, V32
[12]   Modelling white matter with spherical deconvolution: How and why? [J].
Dell'Acqua, Flavio ;
Tournier, J. -Donald .
NMR IN BIOMEDICINE, 2019, 32 (04)
[13]  
Frechet M., 1948, Annales de l'institut Henri Poincare, V10, P215
[14]   HEALPix:: A framework for high-resolution discretization and fast analysis of data distributed on the sphere [J].
Górski, KM ;
Hivon, E ;
Banday, AJ ;
Wandelt, BD ;
Hansen, FK ;
Reinecke, M ;
Bartelmann, M .
ASTROPHYSICAL JOURNAL, 2005, 622 (02) :759-771
[15]   Newton's method, zeroes of vector fields, and the Riemannian center of mass [J].
Groisser, D .
ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) :95-135
[16]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[17]  
Huang ZW, 2018, AAAI CONF ARTIF INTE, P3279
[18]   Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data [J].
Jeurissen, Ben ;
Tournier, Jacques-Donald ;
Dhollander, Thijs ;
Connelly, Alan ;
Sijbers, Jan .
NEUROIMAGE, 2014, 103 :411-426
[19]   Trainable Convolution Filters and Their Application to Face Recognition [J].
Kumar, Ritwik ;
Banerjee, Arunava ;
Vemuri, Baba C. ;
Pfister, Hanspeter .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1423-1436
[20]  
Lee J.M., 1997, Graduate Texts in Mathematics, V176, DOI [DOI 10.1007/B98852, 10.1007/b98852]