A Higher Order Manifold-Valued Convolutional Neural Network with Applications to Diffusion MRI Processing

被引:7
作者
Bouza, Jose J. [1 ]
Yang, Chun-Hao [1 ]
Vaillancourt, David [2 ]
Vemuri, Baba C. [1 ]
机构
[1] Univ Florida, CISE, Gainesville, FL 32611 USA
[2] Univ Florida, Appl Physiol & Kinesiol, Gainesville, FL 32611 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021 | 2021年 / 12729卷
关键词
Riemannian manifolds; Volterra series; Convolutional neural network; Diffusion MRI; fODF reconstruction; Geometric deep learning; FRAMEWORK;
D O I
10.1007/978-3-030-78191-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel generalization of the Volterra Series, which can be viewed as a higher-order convolution, to manifold-valued functions. A special case of the manifold-valued Volterra Series (MVVS) gives us a natural extension of the ordinary convolution to manifold-valued functions that we call, the manifold-valued convolution (MVC). We prove that these generalizations preserve the equivariance properties of the Euclidean Volterra Series and the traditional convolution operator. We present novel deep network architectures using the MVVS and the MVC operations which are then validated via two experiments. These include, (i) movement disorder classification from diffusion magnetic resonance images (dMRI), and (ii) fiber orientation distribution function (fODF) reconstruction from compressed sensed dMRIs. In both the experiments, MVVS and MVC networks outperform the state-of-the-art.
引用
收藏
页码:304 / 317
页数:14
相关论文
共 31 条
[1]   RIEMANNIAN Lp CENTER OF MASS: EXISTENCE, UNIQUENESS, AND CONVEXITY [J].
Afsari, Bijan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) :655-673
[2]  
[Anonymous], 2017, P AAAI C ART INT, DOI DOI 10.1609/AAAI.V31I1.10866
[3]  
[Anonymous], 2019, ICLR
[4]   A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI [J].
Archer, Derek B. ;
Vaillancourt, David E. ;
Coombes, Stephen A. .
CEREBRAL CORTEX, 2018, 28 (05) :1685-1699
[5]   VolterraNet: A Higher Order Convolutional Network With Group Equivariance for Homogeneous Manifolds [J].
Banerjee, Monami ;
Chakraborty, Rudrasis ;
Bouza, Jose ;
Vemuri, Baba C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) :823-833
[6]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[7]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[8]  
Brooks D, 2019, ADV NEUR IN, V32
[9]   ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications [J].
Chakraborty, Rudrasis ;
Bouza, Jose ;
Manton, Jonathan ;
Vemuri, Baba C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) :799-810
[10]   A Deep Neural Network for Manifold-Valued Data with Applications to Neuroimaging [J].
Chakraborty, Rudrasis ;
Bouza, Jose ;
Manton, Jonathan ;
Vemuri, Baba C. .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 :112-124