Robustness, Entrainment, and Hybridization in Dissipative Molecular Networks, and the Origin of Life

被引:48
作者
Cafferty, Brian J. [1 ]
Wong, Albert S. Y. [1 ]
Semenov, Sergey N. [1 ,5 ]
Belding, Lee [1 ]
Gmur, Samira [1 ]
Huck, Wilhelm T. S. [2 ]
Whitesides, George M. [1 ,3 ,4 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 1 35, NL-6525 AJ Nijmegen, Netherlands
[3] Wyss Inst Biol Inspired Engn, 60 Oxford St, Cambridge, MA 02138 USA
[4] Harvard Univ, Kalvi Inst Bionano Sci & Technol, 29 Oxford St, Cambridge, MA 02138 USA
[5] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
CHEMISTRY; RNA; EVOLUTION; DYNAMICS; LOGIC;
D O I
10.1021/jacs.9b02554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
How simple chemical reactions self-assembled into complex, robust networks at the origin of life is unknown. This general problem-self-assembly of dissipative molecular networks-is also important in understanding the growth of complexity from simplicity in molecular and biomolecular systems. Here, we describe how heterogeneity in the composition of a small network of oscillatory organic reactions can sustain (rather than stop) these oscillations, when homogeneity in their composition does not. Specifically, multiple reactants in an amide-forming network sustain oscillation when the environment (here, the space velocity) changes, while homogeneous networks-those with fewer reactants-do not. Remarkably, a mixture of two reactants of different structure-neither of which produces oscillations individually-oscillates when combined. These results demonstrate that molecular heterogeneity present in mixtures of reactants can promote rather than suppress complex behaviors.
引用
收藏
页码:8289 / 8295
页数:7
相关论文
共 40 条
[1]   Nonenzymatic Template-Directed RNA Synthesis Inside Model Protocells [J].
Adamala, Katarzyna ;
Szostak, Jack W. .
SCIENCE, 2013, 342 (6162) :1098-1100
[2]   Emergence of Life from Trapped Nucleotides? Non-Equilibrium Behavior of Oligonucleotides in Thermal Gradients [J].
Agerschou, Emil Dandanell ;
Mast, Christof B. ;
Braun, Dieter .
SYNLETT, 2017, 28 (01) :56-63
[3]   EXPERIMENTAL-EVIDENCE FOR THE COEXISTENCE OF OSCILLATORY AND STEADY-STATES IN THE PEROXIDASE-OXIDASE REACTION [J].
AGUDA, BD ;
FRISCH, LLH ;
OLSEN, LF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (18) :6652-6656
[4]  
[Anonymous], 1991, BLUEPRINT CELL NATUR
[5]  
Anslyn E. V., 2006, Modern physical organic chemistry
[6]  
Barabsi A. L., 2016, Network Science
[7]   A mathematical tool for exploring the dynamics of biological networks [J].
Barbano, Paolo E. ;
Spivak, Marina ;
Flajolet, Marc ;
Nairn, Angus C. ;
Greengard, Paul ;
Greengard, Leslie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) :19169-19174
[8]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[9]   Mechanisms of Autocatalysis [J].
Bissette, Andrew J. ;
Fletcher, Stephen P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (49) :12800-12826
[10]   Robustness and period sensitivity analysis of minimal models for biochemical oscillators [J].
Caicedo-Casso, Angelica ;
Kang, Hye-Won ;
Lim, Sookkyung ;
Hong, Christian I. .
SCIENTIFIC REPORTS, 2015, 5