Parameter identification of Rossler's chaotic system by an evolutionary algorithm

被引:38
作者
Chang, Wei-Der [1 ]
机构
[1] Shu Te Univ, Dept Comp & Commun, Kaohsiung 824, Taiwan
关键词
D O I
10.1016/j.chaos.2005.08.121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a differential evolution (DE) algorithm is applied to parameter identification of Rossler's chaotic system. The differential evolution has been shown to possess a powerful searching capability for finding the solutions for a given optimization problem, and it allows for parameter solution to appear directly in the form of floating point without further numerical coding or decoding. Three unknown parameters of Rossler's Chaotic system are optimally estimated by using the DE algorithm. Finally, a numerical example is given to verify the effectiveness of the proposed method. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1047 / 1053
页数:7
相关论文
共 20 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   Parameters identification and synchronization of chaotic systems based upon adaptive control [J].
Chen, Shihua ;
Lü, Jinhu .
Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 299 (04) :353-358
[3]   Designing pid controllers with a minimum IAE criterion by a differential evolution algorithm [J].
Cheng, SL ;
Hwang, CY .
CHEMICAL ENGINEERING COMMUNICATIONS, 1998, 170 :83-115
[4]   Optimal approximation of linear systems by a differential evolution algorithm [J].
Cheng, SL ;
Hwang, C .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2001, 31 (06) :698-707
[5]   Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms [J].
Cruz, ILL ;
van Willigenburg, LG ;
van Straten, G .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2003, 40 (1-3) :179-197
[6]   Adaptive synchronization of Lu system with uncertain parameters [J].
Elabbasy, EM ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :657-667
[7]   Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification [J].
Fotsin, HB ;
Woafo, P .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1363-1371
[8]   Chaos synchronization and parameter identification of three time scales brushless DC motor system [J].
Ge, ZM ;
Cheng, JW .
CHAOS SOLITONS & FRACTALS, 2005, 24 (02) :597-616
[9]   Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters [J].
Kim, JH ;
Park, CW ;
Kim, E ;
Park, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1353-1361
[10]  
Kyprianou A, 2001, J SOUND VIB, V248, P289, DOI 10.1006/jvsi.2001.3798