Microstructurally resolved modeling of all solid-state batteries: Latest progresses, opportunities, and challenges

被引:15
作者
Alabdali, Mohammed [1 ]
Zanotto, Franco M. [1 ,2 ]
Viallet, Virginie [1 ,2 ]
Seznec, Vincent [1 ,2 ,3 ]
Franco, Alejandro A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides LRCS, Hub Energie, CNRS,UMR 7314, 15 rue Baudelocque, F-80039 Amiens, France
[2] CNRS, Hub Energie, FR 3459, Reseau Stockage Electrochim Energie RS2E, 15 rue Baudelocque, F-80039 Amiens, France
[3] CNRS, ALISTORE European Res Inst, Hub Energie, FR 3104, 15 rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ELECTRODE FABRICATION; PERFORMANCE; SIMULATION;
D O I
10.1016/j.coelec.2022.101127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All solid-state batteries are promising high-energy-density storage devices. To optimize their performance without costly trial and error approaches, microstructure-resolved continuum models have been proposed to understand the influence of the electrode architecture on their capabilities. We discuss the recent advances in the microstructure-resolved modeling of solid-state batteries. While not all of the experimentally observed phenomena can be accurately represented, these models generally agree that the low ionic conductivity of the solid electrolyte is a limiting factor. We conclude by highlighting the need for microstructure-resolved models of degradation mechanisms, manufacturing effects and artificial intelligence approaches speeding up the optimization of interfaces in all solid-state-battery electrodes.
引用
收藏
页数:13
相关论文
共 65 条
[1]  
Alabdali M, 2022, ChemRxiv, DOI [10.26434/chemrxiv-2022-qvs9z, DOI 10.26434/CHEMRXIV-2022-QVS9Z]
[2]  
[Anonymous], 2022, About Us
[3]   Perspectives on manufacturing simulations of Li-S battery cathodes [J].
Arcelus, Oier ;
Franco, Alejandro A. .
JOURNAL OF PHYSICS-ENERGY, 2022, 4 (01)
[4]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[5]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[6]   Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes [J].
Bertei, A. ;
Nucci, B. ;
Nicolella, C. .
CHEMICAL ENGINEERING SCIENCE, 2013, 101 :175-190
[7]   Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries [J].
Bielefeld, Anja ;
Weber, Dominik A. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) :12821-12833
[8]   Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries [J].
Bielefeld, Anja ;
Weber, Dominik A. ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (03) :1626-1634
[9]   Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries [J].
Bistri, Donald ;
Di Leo, Claudio V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
[10]   Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning [J].
Chen, Yu-Ting ;
Duquesnoy, Marc ;
Tan, Darren H. S. ;
Doux, Jean-Marie ;
Yang, Hedi ;
Deysher, Grayson ;
Ridley, Phillip ;
Franco, Alejandro A. ;
Meng, Ying Shirley ;
Chen, Zheng .
ACS ENERGY LETTERS, 2021, 6 (04) :1639-1648