Polyconvex energies and cavitation

被引:3
|
作者
Celada, Pietro [1 ]
Perrotta, Stefania [2 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Matemat Pura & Applicata G Vitali, I-41125 Modena, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2013年 / 20卷 / 02期
关键词
Polyconvex integrals; Radial singular minimizers; Cavitation;
D O I
10.1007/s00030-012-0184-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of singular minimizers in the class of radial deformations for polyconvex energies that grow linearly with respect to the Jacobian.
引用
收藏
页码:295 / 321
页数:27
相关论文
共 50 条
  • [1] Polyconvex energies and cavitation
    Pietro Celada
    Stefania Perrotta
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 295 - 321
  • [2] Anisotropic polyconvex energies
    Schroeder, Joerg
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 53 - 105
  • [3] POLYCONVEX ENERGIES AND SYMMETRY REQUIREMENTS
    PODIOGUIDUGLI, P
    JOURNAL OF ELASTICITY, 1991, 26 (03) : 223 - 237
  • [4] CRITICAL POINTS OF DEGENERATE POLYCONVEX ENERGIES*
    Tione, Riccardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) : 3205 - 3225
  • [5] Partial regularity for minimizers of degenerate polyconvex energies
    Esposito, L
    Mingione, G
    JOURNAL OF CONVEX ANALYSIS, 2001, 8 (01) : 1 - 38
  • [6] ON THE WEAK LOWER SEMICONTINUITY OF ENERGIES WITH POLYCONVEX INTEGRANDS
    GANGBO, W
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1994, 73 (05): : 455 - 469
  • [7] Crack Occurrence in Bodies with Gradient Polyconvex Energies
    Martin Kružík
    Paolo Maria Mariano
    Domenico Mucci
    Journal of Nonlinear Science, 2022, 32
  • [8] Crack Occurrence in Bodies with Gradient Polyconvex Energies
    Kruzik, Martin
    Mariano, Paolo Maria
    Mucci, Domenico
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
  • [9] Minimizers of nonlocal polyconvex energies in nonlocal hyperelasticity
    Bellido, Jose C.
    Cueto, Javier
    Mora-Corral, Carlos
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) : 1039 - 1055
  • [10] Polyconvex Energies for Trigonal, Tetragonal and Cubic Symmetry Groups
    Schroeder, Joerg
    Neff, Patrizio
    Ebbing, Vera
    IUTAM SYMPOSIUM ON VARIATIONAL CONCEPTS WITH APPLICATIONS TO THE MECHANICS OF MATERIALS, 2010, 21 : 221 - +