Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378☆

被引:246
作者
Carrer, Michele [1 ]
Liu, Ning [1 ]
Grueter, Chad E. [1 ]
Williams, Andrew H. [1 ]
Frisard, Madlyn I. [2 ]
Hulver, Matthew W. [2 ]
Bassel-Duby, Rhonda [1 ]
Olson, Eric N. [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
[2] Virginia Tech Univ, Dept Human Nutr Foods & Exercise, Blacksburg, VA 24061 USA
基金
美国国家卫生研究院;
关键词
fatty acid oxidation; adipocytes; mitochondrial CO2 production; FATTY-ACID-METABOLISM; INSULIN-RESISTANCE; SKELETAL-MUSCLE; TRANSCRIPTIONAL REGULATION; OXIDATIVE STRESS; GENE-EXPRESSION; DYSFUNCTION; OBESITY; GAMMA; DISEASE;
D O I
10.1073/pnas.1207605109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor gamma coactivator 1 beta (PGC-1 beta) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1 beta gene encodes two microRNAs (miRNAs), miR-378 and miR-378(star), which counterbalance the metabolic actions of PGC-1 beta. Mice genetically lacking miR-378 and miR-378(star) are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378(star), respectively, and are elevated in the livers of miR-378/378(star) KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378(star), previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378(star) as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.
引用
收藏
页码:15330 / 15335
页数:6
相关论文
共 51 条
[1]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J].
Bonnard, Charlotte ;
Durand, Annie ;
Peyrol, Simone ;
Chanseaume, Emilie ;
Chauvin, Marie-Agnes ;
Morio, Beatrice ;
Vidal, Hubert ;
Rieusset, Jennifer .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (02) :789-800
[4]   Redesign of carnitine acetyltransferase specificity by protein engineering [J].
Cordente, AG ;
Lopez-Viñas, E ;
Vázquez, MI ;
Swiegers, JH ;
Pretorius, IS ;
Gómez-Puertas, P ;
Hegardt, FG ;
Asins, G ;
Serra, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (32) :33899-33908
[5]   Links between metabolism and cancer [J].
Dang, Chi V. .
GENES & DEVELOPMENT, 2012, 26 (09) :877-890
[6]   Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2 [J].
Dill, Holger ;
Linder, Bastian ;
Fehr, Alexander ;
Fischer, Utz .
GENES & DEVELOPMENT, 2012, 26 (01) :25-30
[7]   A Parsimonious Model for Gene Regulation by miRNAs [J].
Djuranovic, Sergej ;
Nahvi, Ali ;
Green, Rachel .
SCIENCE, 2011, 331 (6017) :550-553
[8]   miR-378☆ Mediates Metabolic Shift in Breast Cancer Cells via the PGC-1β/ERRγ Transcriptional Pathway [J].
Eichner, Lillian J. ;
Perry, Marie-Claude ;
Dufour, Catherine R. ;
Bertos, Nicholas ;
Park, Morag ;
St-Pierre, Julie ;
Giguere, Vincent .
CELL METABOLISM, 2010, 12 (04) :352-361
[9]   Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene:: cDNA sequence, genomic organization, chromosomal localization, and tissue expression [J].
Esterbauer, H ;
Oberkofler, H ;
Krempler, F ;
Patsch, W .
GENOMICS, 1999, 62 (01) :98-102
[10]   Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? [J].
Filipowicz, Witold ;
Bhattacharyya, Suvendra N. ;
Sonenberg, Nahum .
NATURE REVIEWS GENETICS, 2008, 9 (02) :102-114