A Comparative Study of Polynomial-Type Chaos Expansions for Indicator Functions*

被引:1
|
作者
Bourgey, Florian [1 ,2 ]
Gobet, Emmanuel [3 ]
Rey, Clement [3 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Math Appl CMAP, CNRS, Route DE Saclay, F-91128 Palaiseau, France
[2] Bloomberg LP, Quantitat Res, 3 Queen Victoria St, London EC4N 4TQ, England
[3] Ecole Polytech, CMAP, F-91120 Palaiseau, France
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2022年 / 10卷 / 04期
关键词
metamodeling; orthogonal polynomials; polynomial chaos expansion; CONVERGENCE;
D O I
10.1137/21M1413146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator functions of the form 1c <= X for some threshold parameter c is an element of R and a random variable X associated with classical orthogonal polynomials. We provide tight global and localized L2 estimates for the resulting truncation of the PCE, and numerical experiments support the tightness of the error estimates. We also compare the theoretical and numerical accuracy of PCE when extra quantile/probability transforms are applied, revealing different optimal choices according to the value of c in the center and the tails of the distribution of X.
引用
收藏
页码:1350 / 1383
页数:34
相关论文
共 50 条
  • [1] Polynomial chaos expansions for dependent random variables
    Jakeman, John D.
    Franzelin, Fabian
    Narayan, Akil
    Eldred, Michael
    Plfueger, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 351 : 643 - 666
  • [2] GENERALIZED POLYNOMIAL CHAOS EXPANSIONS WITH WEIGHTS
    Obermaier, Josef
    Stavropoulou, Faidra
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 30 - 45
  • [3] Projection pursuit adaptation on polynomial chaos expansions
    Zeng, Xiaoshu
    Ghanem, Roger
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [4] Comments on Truncation Errors for Polynomial Chaos Expansions
    Muehlpfordt, Tillmann
    Findeisen, Rolf
    Hagenmeyer, Veit
    Faulwasser, Timm
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (01): : 169 - 174
  • [5] Physics-informed polynomial chaos expansions
    Novak, Lukas
    Sharma, Himanshu
    Shields, Michael D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 506
  • [6] Predicting reinforcing bar development length using polynomial chaos expansions
    Yaseen, Zaher Mundher
    Keshtegar, Behrooz
    Hwang, Hyeon-Jong
    Nehdi, Moncef L.
    ENGINEERING STRUCTURES, 2019, 195 : 524 - 535
  • [7] A GENERALIZED SAMPLING AND PRECONDITIONING SCHEME FOR SPARSE APPROXIMATION OF POLYNOMIAL CHAOS EXPANSIONS
    Jakeman, John D.
    Narayan, Akil
    Zhou, Tao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (03) : A1114 - A1144
  • [8] Polynomial chaos in evaluating failure probability: A comparative study
    Eliška Janouchová
    Jan Sýkora
    Anna Kučerová
    Applications of Mathematics, 2018, 63 : 713 - 737
  • [9] Polynomial chaos in evaluating failure probability: A comparative study
    Janouchova, Eliska
    Sykora, Jan
    Kucerova, Anna
    APPLICATIONS OF MATHEMATICS, 2018, 63 (06) : 713 - 737
  • [10] Some greedy algorithms for sparse polynomial chaos expansions
    Baptista, Ricardo
    Stolbunov, Valentin
    Nair, Prasanth B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 303 - 325