Quasi-stationary states of the NRT nonlinear Schrodinger equation

被引:16
作者
Toranzo, I. V. [1 ,2 ]
Plastino, A. R. [1 ,2 ,3 ,4 ,5 ]
Dehesa, J. S. [1 ,2 ]
Plastino, A. [1 ,2 ,6 ]
机构
[1] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain
[2] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain
[3] Univ Nacl Noroeste Buenos Aires UNNOBA, CeBio, Junin, Argentina
[4] Univ Nacl Noroeste Buenos Aires UNNOBA, Secretaria Invest, Junin, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Junin, Argentina
[6] Natl Univ La Plata, IFLP CCT Conicet, CC 727, RA-1900 La Plata, Argentina
关键词
Nonlinear Schrodinger equation; Quasi stationary states; Tsallis Thermostatistics; QUANTUM ENTANGLEMENT; DIFFUSION; NONEXTENSIVITY; INFORMATION; ENTROPY; MODEL;
D O I
10.1016/j.physa.2013.04.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With regards to the nonlinear Schrodinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis q-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences "separated" in a q-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrodinger equation, when the deformation vanishes (q = 1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3945 / 3951
页数:7
相关论文
共 38 条
[1]   Thermostatistics of Overdamped Motion of Interacting Particles [J].
Andrade, J. S., Jr. ;
da Silva, G. F. T. ;
Moreira, A. A. ;
Nobre, F. D. ;
Curado, E. M. F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[2]  
[Anonymous], 2009, SPRINGER
[3]   Nonlinear diffusion equation and nonlinear external force: Exact solution [J].
Assis, P. C., Jr. ;
da Silva, P. C. ;
da Silva, L. R. ;
Lenzi, E. K. ;
Lenzi, M. K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[4]   Generalised information and entropy measures in physics [J].
Beck, Christian .
CONTEMPORARY PHYSICS, 2009, 50 (04) :495-510
[5]   Quantum entanglement in exactly soluble atomic models: the Moshinsky model with three electrons, and with two electrons in a uniform magnetic field [J].
Bouvrie, P. A. ;
Majtey, A. P. ;
Plastino, A. R. ;
Sanchez-Moreno, P. ;
Dehesa, J. S. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (01)
[6]   Displacement operator for quantum systems with position-dependent mass [J].
Costa Filho, R. N. ;
Almeida, M. P. ;
Farias, G. A. ;
Andrade, J. S., Jr. .
PHYSICAL REVIEW A, 2011, 84 (05)
[7]  
Frank T.D., 2005, SPRINGER SERIES SYNE, P2
[8]   Estimating the nonextensivity of systems from experimental data: a nonlinear diffusion equation approach [J].
Frank, TD ;
Friedrich, R .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 :65-76
[9]  
Gell-Mann M., 2004, Nonextensive Entropy-Interdisciplinary Applications
[10]   New features of quantum discord uncovered by q-entropies [J].
Majtey, A. P. ;
Plastino, A. R. ;
Plastino, A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (07) :2491-2499