Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes

被引:20
作者
Chen, Li [1 ]
Tang, Siyun [1 ]
Ma, Xiao [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Algebraic soft-decision decoding; complexity reduction; Koetter-Vardy algorithm; progressive interpolation; Reed-Solomon codes; INTERPOLATION; ALGORITHM;
D O I
10.1109/TCOMM.2012.100912.110752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The algebraic soft-decision decoding (ASD) algorithm is a polynomial-time soft decoding algorithm for Reed-Solomon (RS) codes. It outperforms both the algebraic hard-decision decoding (AHD) and the conventional unique decoding algorithms, but with a high computational cost. This paper proposes a progressive ASD (PASD) algorithm that enables the conventional ASD algorithm to perform decoding with an adjustable designed factorization output list size (OLS). The OLS is enlarged progressively leading to an incremental computation for the interpolation and an enhanced error-correction capability. Multiple factorizations are performed in order to find out the intended message polynomial which will be validated by a cyclic redundant check (CRC) code. The incremental interpolation constraints are introduced to characterize the progressive decoding. The validity analysis of the algorithm shows the PASD algorithm is a natural and computationally saving generalization of the ASD algorithm, delivering the same interpolation solution. The average decoding complexity of the algorithm is further theoretically characterized, revealing its dependence on the channel condition. The simulation results further validate the analysis by showing that the average decoding complexity can be converged to the minimal level in a good channel condition. Finally, performance evaluation shows the PASD algorithm preserves the error-correction capability of the ASD algorithm.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 28 条
[1]   Low-Complexity Soft-Decoding Algorithms for Reed-Solomon Codes-Part I: An Algebraic Soft-In Hard-Out Chase Decoder [J].
Bellorado, Jason ;
Kavcic, Aleksandar .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) :945-959
[2]  
Cassuto Y., P 2005 IEE IEEE INT
[3]   Efficient factorisation algorithm for list decoding Algebraic-Geometric and Reed-Solomon codes [J].
Chen, L. ;
Carrasco, R. A. ;
Johnston, M. ;
Chester, E. G. .
2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, :851-856
[4]   Performance of Reed-Solomon codes using the Guruswami-Sudan algorithm with improved interpolation efficiency [J].
Chen, L. ;
Carrasco, R. A. ;
Chester, E. G. .
IET COMMUNICATIONS, 2007, 1 (02) :241-250
[5]   Reduced Complexity Interpolation for List Decoding Hermitian Codes [J].
Chen, Li ;
Carrasco, Rolando ;
Johnston, Martin .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (11) :4353-4361
[6]   Soft-Decision List Decoding of Hermitian Codes [J].
Chen, Li ;
Carrasco, Rolando ;
Johnston, Martin .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (08) :2169-2176
[7]   Applications of algebraic soft-decision decoding of Reed-Solomon codes [J].
Gross, Warren J. ;
Kschischang, Frank R. ;
Koetter, Ralf ;
Gulak, P. Glenn .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2006, 54 (07) :1224-1234
[8]   Towards a VLSI architecture for interpolation-based soft-decision Reed-Solomon decoders [J].
Gross, WJ ;
Kschischang, FR ;
Koetter, R ;
Gulak, PG .
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2005, 39 (1-2) :93-111
[9]   Improved decoding of Reed-Solomon and algebraic-geometry codes [J].
Guruswami, V ;
Sudan, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :1757-1767
[10]  
Hasse H, 1936, J REINE ANGEW MATH, V175, P50