Property (R) under Perturbations

被引:29
作者
Aiena, Pietro [1 ]
Aponte, Elvis [2 ]
Guillen, Jesus R. [3 ]
Pena, Pedro [4 ]
机构
[1] Univ Palermo, Fac Ingn, Dipartimento Metodi & Modelli Matemat, I-90128 Palermo, Italy
[2] UCLA, Fac Ciencias, Dept Matemat, Barquisimeto, Venezuela
[3] ULA, Fac Ciencias, Dept Matemat, Merida, Venezuela
[4] ULA, NURR, Dept Fis & Matemat, Trujillo, Venezuela
关键词
Property (R); Weyl type theorems; WEYLS THEOREM; OPERATORS;
D O I
10.1007/s00009-012-0174-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Property (R) holds for a bounded linear operator , defined on a complex infinite dimensional Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points lambda of the approximate point spectrum for which lambda I - T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with T.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 32 条
[11]   Weyl's theorem for perturbations of paranormal operators [J].
Aiena, Pietro ;
Guillen, Jesus R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) :2443-2451
[12]   Variations on Weyl's theorem [J].
Aiena, Pietro ;
Pena, Pedro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :566-579
[13]   Polaroid type operators under quasi-affinities [J].
Aiena, Pietro ;
Cho, Muneo ;
Gonzalez, Manuel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :485-495
[14]  
Aiena P, 2008, ACTA SCI MATH, V74, P669
[15]   Weyl Type Theorems for Left and Right Polaroid Operators [J].
Aiena, Pietro ;
Aponte, Elvis ;
Balzan, Edixon .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) :1-20
[16]   Property (w) and perturbations III [J].
Aiena, Pietro ;
Biondi, Maria T. ;
Villafane, Fernando .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) :205-214
[17]   Weyl's theorem for algebraically quasi-class A operators [J].
An, Il Ju ;
Han, Young Min .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :1-10
[18]  
Coburn LA., 1970, Michigan Math J, V20, P529
[19]   Weyl's theorem, a-Weyl's theorem, and local spectral theory [J].
Curto, RE ;
Han, YM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :499-509
[20]  
Djordjevic DS, 1999, PUBL MATH DEBRECEN, V55, P283