DECISION FUSION-BASED FETAL ULTRASOUND IMAGE PLANE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

被引:34
|
作者
Sridar, Pradeeba [1 ,2 ]
Kumar, Ashnil [2 ]
Quinton, Ann [3 ]
Nanan, Ralph [3 ]
Kim, Jinman [2 ]
Krishnakumar, Ramarathnam [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Chennai 600036, Tamil Nadu, India
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[3] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2019年 / 45卷 / 05期
关键词
Convolutional neural network; Fetal ultrasound; Selective search; Decision fusion; Classification; LOCALIZATION; GUIDELINES;
D O I
10.1016/j.ultrasmedbio.2018.11.016
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Machine learning for ultrasound image analysis and interpretation can be helpful in automated image classification in large-scale retrospective analyses to objectively derive new indicators of abnormal fetal development that are embedded in ultrasound images. Current approaches to automatic classification are limited to the use of either image patches (cropped images) or the global (whole) image. As many fetal organs have similar visual features, cropped images can misclassify certain structures such as the kidneys and abdomen. Also, the whole image does not encode sufficient local information about structures to identify different structures in different locations. Here we propose a method to automatically classify 14 different fetal structures in 2-D fetal ultrasound images by fusing information from both cropped regions of fetal structures and the whole image. Our method trains two feature extractors by fine-tuning pre-trained convolutional neural networks with the whole ultrasound fetal images and the discriminant regions of the fetal structures found in the whole image. The novelty of our method is in integrating the classification decisions made from the global and local features without relying on priors. In addition, our method can use the classification outcome to localize the fetal structures in the image. Our experiments on a data set of 4074 2-D ultrasound images (training: 3109, test: 965) achieved a mean accuracy of 97.05%, mean precision of 76.47% and mean recall of 75.41%. The Cohen kappa of 0.72 revealed the highest agreement between the ground truth and the proposed method. The superiority of the proposed method over the other non-fusion-based methods is statistically significant (p < 0.05). We found that our method is capable of predicting images without ultrasound scanner overlays with a mean accuracy of 92%. The proposed method can be leveraged to retrospectively classify any ultrasound images in clinical research. (C) 2018 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1259 / 1273
页数:15
相关论文
共 50 条
  • [31] Flotation froth image classification using convolutional neural networks
    Zarie, M.
    Jahedsaravani, A.
    Massinaei, M.
    MINERALS ENGINEERING, 2020, 155
  • [32] Malware Binary Image Classification Using Convolutional Neural Networks
    Kiger, John
    Ho, Shen-Shyang
    Heydari, Vahid
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2022), 2022, : 469 - 478
  • [33] Advanced Image Classification using Wavelets and Convolutional Neural Networks
    Williams, Travis
    Li, Robert
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 233 - 239
  • [34] Cloud Classification of Satellite Image Based on Convolutional Neural Networks
    Cai, Keyang
    Wang, Hong
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 874 - 877
  • [35] Flower Image Classification Based on Multi Convolutional Neural Networks
    Chen, Jian-feng
    Li, Wei
    Li, Hui-yun
    Cheng, Hao
    2015 INTERNATIONAL CONFERENCE ON SOFTWARE, MULTIMEDIA AND COMMUNICATION ENGINEERING (SMCE 2015), 2015, : 69 - 73
  • [36] Review of Image Classification Algorithms Based on Convolutional Neural Networks
    Chen, Leiyu
    Li, Shaobo
    Bai, Qiang
    Yang, Jing
    Jiang, Sanlong
    Miao, Yanming
    REMOTE SENSING, 2021, 13 (22)
  • [37] CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Zhang, Yameng
    Li, Liutong
    Zhu, Mingcang
    He, Yong
    Li, Minqi
    Guo, Zhengqiang
    He, Yue
    Yu, Zhenlu
    Yang, Xiaocheng
    Liu, Xin
    Luo, Jianhua
    Yang, Taoli
    Liu, Yalan
    Li, Jiang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1828 - 1831
  • [38] An Ensemble of Convolutional Neural Networks for Image Classification Based on LSTM
    Chen, JingLin
    Wang, YiLei
    Wu, YingJie
    Cai, ChaoQuan
    2017 INTERNATIONAL CONFERENCE ON GREEN INFORMATICS (ICGI), 2017, : 217 - 222
  • [39] Decision Fusion in Automated Sleep Apnea Classification Using Multple Polysomnography Sensors and Convolutional Neural Networks
    Stewart, Matthew
    Higginson, Caitlin
    Lariviere-Chartier, Julien
    Robillard, Rebecca
    Green, James
    Goubran, Rafik
    Knoefel, Frank
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [40] A Decision-Level Fusion Method Based on Convolutional Neural Networks for Remote Sensing Scene Classification
    Jiang, Bitao
    Li, Xiaobin
    Sun, Tong
    Wang, Shengjin
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 128 - 132