Constrained Euler buckling

被引:102
作者
Domokos, G
Holmes, P
Royce, B
机构
[1] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
[2] PRINCETON UNIV,DEPT AEROSP & MECH ENGN,PRINCETON,NJ 08544
[3] PRINCETON UNIV,PRINCETON MAT INST,PRINCETON,NJ 08544
基金
匈牙利科学研究基金会;
关键词
elastic buckling; bifurcation; nonlinear boundary value problem;
D O I
10.1007/BF02678090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider elastic buckling of an inextensible beam confined to the plane and subject to fixed end displacements, in the presence of rigid, frictionless side-walls which constrain overall lateral displacements. We formulate the geometrically nonlinear (Euler) problem, derive some analytical results for special cases, and develop a numerical shooting scheme for solution. We compare these theoretical and numerical results with experiments on slender steel beams. In contrast to the simple behavior of the unconstrained problem, we find a rich bifurcation structure, with multiple branches and concomitant hysteresis in the overall load-displacement curves.
引用
收藏
页码:281 / 314
页数:34
相关论文
共 15 条
  • [1] Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
  • [2] ABTMAN SS, 1995, NONLINEAR PROBLEMS E
  • [3] Allgower E., 1990, NUMERICAL CONTINUATI
  • [4] DOMOKOS G, 1994, Z ANGEW MATH MECH, V74, pT289
  • [5] A GLOBAL, DIRECT ALGORITHM FOR PATH-FOLLOWING AND ACTIVE STATIC CONTROL OF ELASTIC BAR STRUCTURES
    DOMOKOS, G
    GASPAR, Z
    [J]. MECHANICS OF STRUCTURES AND MACHINES, 1995, 23 (04): : 549 - 571
  • [6] Euler L., 1744, OPERA OMNIA 1, V1, P231
  • [7] Feodosyev VI., 1977, SELECTED PROBLEMS QU
  • [8] KELLER JB, 1972, SIAM J APPL MATH, V23, P446
  • [9] KELLER JB, 1973, SIAM J APPL MATH, V24, P215
  • [10] Love A. E. H., 2013, TREATISE MATH THEORY, V1